monolith/processing/process.py

228 lines
6.4 KiB
Python
Raw Normal View History

import asyncio
import os
import random
# For key generation
import string
# Squash errors
import warnings
from concurrent.futures import ProcessPoolExecutor
# For timestamp processing
from datetime import datetime
from math import ceil
import orjson
import regex
# Tokenisation
import spacy
# For 4chan message parsing
from bs4 import BeautifulSoup
from numpy import array_split
from polyglot.detect.base import logger as polyglot_logger
# For NLP
from polyglot.text import Text
from pycld2 import error as cld2_error
from siphashc import siphash
# For sentiment
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
import db
import util
# 4chan schema
from schemas.ch4_s import ATTRMAP
# For tokenisation
# from gensim.parsing.preprocessing import (
# strip_tags,
# strip_punctuation,
# strip_numeric,
# stem_text,
# strip_multiple_whitespaces,
# strip_non_alphanum,
# remove_stopwords,
# strip_short,
# preprocess_string,
# )
# CUSTOM_FILTERS = [
# lambda x: x.lower(),
# strip_tags, #
# strip_punctuation, #
# strip_multiple_whitespaces,
# strip_numeric,
# remove_stopwords,
# strip_short,
# #stem_text,
# strip_non_alphanum, #
# ]
RE_BAD_CHARS = regex.compile(r"[\p{Cc}\p{Cs}]+")
# Squash errors
polyglot_logger.setLevel("ERROR")
warnings.filterwarnings("ignore", category=UserWarning, module="bs4")
TAGS = ["NOUN", "ADJ", "VERB", "ADV"]
nlp = spacy.load("en_core_web_sm", disable=["parser", "ner"])
log = util.get_logger("process")
# Maximum number of CPU threads to use for post processing
2022-09-20 21:29:13 +00:00
CPU_THREADS = int(os.getenv("MONOLITH_PROCESS_THREADS", os.cpu_count()))
p = ProcessPoolExecutor(CPU_THREADS)
def get_hash_key():
hash_key = db.r.get("hashing_key")
if not hash_key:
letters = string.ascii_lowercase
hash_key = "".join(random.choice(letters) for i in range(16))
log.debug(f"Created new hash key: {hash_key}")
db.r.set("hashing_key", hash_key)
else:
hash_key = hash_key.decode("ascii")
log.debug(f"Decoded hash key: {hash_key}")
return hash_key
hash_key = get_hash_key()
@asyncio.coroutine
async def spawn_processing_threads(data):
len_data = len(data)
loop = asyncio.get_event_loop()
tasks = []
if len(data) < CPU_THREADS * 100:
split_data = [data]
else:
msg_per_core = int(len(data) / CPU_THREADS)
split_data = array_split(data, ceil(len(data) / msg_per_core))
for index, split in enumerate(split_data):
log.debug(f"Delegating processing of {len(split)} messages to thread {index}")
task = loop.run_in_executor(p, process_data, split)
tasks.append(task)
results = [await task for task in tasks]
2022-09-22 16:39:29 +00:00
log.debug(
(
f"Results from processing of {len_data} messages in "
f"{len(split_data)} threads: {len(results)}"
)
)
# Join the results back from the split list
flat_list = [item for sublist in results for item in sublist]
await db.store_kafka_batch(flat_list)
2022-09-22 16:39:29 +00:00
# log.debug(f"Finished processing {len_data} messages")
def process_data(data):
to_store = []
# Initialise sentiment analyser
analyzer = SentimentIntensityAnalyzer()
for msg in data:
# normalise fields
for key, value in list(msg.items()):
if value is None:
del msg[key]
# Remove invalid UTF-8 characters
# IRC and Discord
if "msg" in msg:
msg["msg"] = RE_BAD_CHARS.sub("", msg["msg"])
# 4chan - since we change the attributes below
if "com" in msg:
msg["com"] = RE_BAD_CHARS.sub("", msg["com"])
if msg["src"] == "4ch":
board = msg["net"]
thread = msg["channel"]
# Calculate hash for post
post_normalised = orjson.dumps(msg, option=orjson.OPT_SORT_KEYS)
hash = siphash(hash_key, post_normalised)
hash = str(hash)
redis_key = f"cache.{board}.{thread}.{msg['no']}"
key_content = db.r.get(redis_key)
if key_content:
key_content = key_content.decode("ascii")
if key_content == hash:
# This deletes the message since the append at the end won't be hit
continue
else:
msg["type"] = "update"
db.r.set(redis_key, hash)
for key2, value in list(msg.items()):
if key2 in ATTRMAP:
msg[ATTRMAP[key2]] = msg[key2]
del msg[key2]
if "ts" in msg:
old_time = msg["ts"]
# '08/30/22(Tue)02:25:37'
time_spl = old_time.split(":")
if len(time_spl) == 3:
old_ts = datetime.strptime(old_time, "%m/%d/%y(%a)%H:%M:%S")
else:
old_ts = datetime.strptime(old_time, "%m/%d/%y(%a)%H:%M")
# new_ts = old_ts.isoformat()
new_ts = int(old_ts.timestamp())
msg["ts"] = new_ts
else:
raise Exception("No TS in msg")
if "msg" in msg:
soup = BeautifulSoup(msg["msg"], "html.parser")
msg_str = soup.get_text(separator="\n")
msg["msg"] = msg_str
# Annotate sentiment/NLP
if "msg" in msg:
RE_BAD_CHARS.sub("", msg["msg"])
# Language
text = Text(msg["msg"])
try:
lang_code = text.language.code
lang_name = text.language.name
msg["lang_code"] = lang_code
msg["lang_name"] = lang_name
except cld2_error as e:
log.error(f"Error detecting language: {e}")
# So below block doesn't fail
lang_code = None
# Blatant discrimination
if lang_code == "en":
# Sentiment
vs = analyzer.polarity_scores(str(msg["msg"]))
addendum = vs["compound"]
msg["sentiment"] = addendum
# Tokens
n = nlp(msg["msg"])
for tag in TAGS:
tag_name = tag.lower()
tags_flag = [token.lemma_ for token in n if token.pos_ == tag]
msg[f"words_{tag_name}"] = tags_flag
# Add the mutated message to the return buffer
to_store.append(msg)
return to_store