Time stuff and switch to gensim for tokenisation
This commit is contained in:
parent
5c91f1af87
commit
06e80a9759
|
@ -16,7 +16,8 @@ COPY requirements.txt /code/
|
|||
COPY discord-patched.tgz /code/
|
||||
|
||||
RUN python -m venv /venv
|
||||
RUN . /venv/bin/activate && pip install -r requirements.txt && python -m spacy download en_core_web_sm
|
||||
RUN . /venv/bin/activate && pip install -r requirements.txt
|
||||
# && python -m spacy download en_core_web_sm
|
||||
|
||||
RUN tar xf /code/discord-patched.tgz -C /venv/lib/python3.10/site-packages
|
||||
|
||||
|
|
|
@ -15,7 +15,8 @@ pycld2
|
|||
morfessor
|
||||
six
|
||||
nltk
|
||||
spacy
|
||||
#spacy
|
||||
gensim
|
||||
python-Levenshtein
|
||||
orjson
|
||||
uvloop
|
||||
|
|
|
@ -5,6 +5,9 @@ import random
|
|||
# For key generation
|
||||
import string
|
||||
|
||||
# For timing
|
||||
import time
|
||||
|
||||
# Squash errors
|
||||
import warnings
|
||||
from concurrent.futures import ProcessPoolExecutor
|
||||
|
@ -16,11 +19,21 @@ from math import ceil
|
|||
import orjson
|
||||
import regex
|
||||
|
||||
# Tokenisation
|
||||
import spacy
|
||||
|
||||
# For 4chan message parsing
|
||||
from bs4 import BeautifulSoup
|
||||
|
||||
# Tokenisation
|
||||
# import spacy
|
||||
from gensim.parsing.preprocessing import ( # stem_text,
|
||||
preprocess_string,
|
||||
remove_stopwords,
|
||||
strip_multiple_whitespaces,
|
||||
strip_non_alphanum,
|
||||
strip_numeric,
|
||||
strip_punctuation,
|
||||
strip_short,
|
||||
strip_tags,
|
||||
)
|
||||
from numpy import array_split
|
||||
from polyglot.detect.base import logger as polyglot_logger
|
||||
|
||||
|
@ -38,30 +51,17 @@ import util
|
|||
# 4chan schema
|
||||
from schemas.ch4_s import ATTRMAP
|
||||
|
||||
# For tokenisation
|
||||
# from gensim.parsing.preprocessing import (
|
||||
# strip_tags,
|
||||
# strip_punctuation,
|
||||
# strip_numeric,
|
||||
# stem_text,
|
||||
# strip_multiple_whitespaces,
|
||||
# strip_non_alphanum,
|
||||
# remove_stopwords,
|
||||
# strip_short,
|
||||
# preprocess_string,
|
||||
# )
|
||||
|
||||
# CUSTOM_FILTERS = [
|
||||
# lambda x: x.lower(),
|
||||
# strip_tags, #
|
||||
# strip_punctuation, #
|
||||
# strip_multiple_whitespaces,
|
||||
# strip_numeric,
|
||||
# remove_stopwords,
|
||||
# strip_short,
|
||||
# #stem_text,
|
||||
# strip_non_alphanum, #
|
||||
# ]
|
||||
CUSTOM_FILTERS = [
|
||||
lambda x: x.lower(),
|
||||
strip_tags, #
|
||||
strip_punctuation, #
|
||||
strip_multiple_whitespaces,
|
||||
strip_numeric,
|
||||
remove_stopwords,
|
||||
strip_short,
|
||||
# stem_text,
|
||||
strip_non_alphanum, #
|
||||
]
|
||||
|
||||
RE_BAD_CHARS = regex.compile(r"[\p{Cc}\p{Cs}]+")
|
||||
|
||||
|
@ -70,8 +70,8 @@ polyglot_logger.setLevel("ERROR")
|
|||
warnings.filterwarnings("ignore", category=UserWarning, module="bs4")
|
||||
|
||||
|
||||
TAGS = ["NOUN", "ADJ", "VERB", "ADV"]
|
||||
nlp = spacy.load("en_core_web_sm", disable=["parser", "ner"])
|
||||
# TAGS = ["NOUN", "ADJ", "VERB", "ADV"]
|
||||
# nlp = spacy.load("en_core_web_sm", disable=["parser", "ner"])
|
||||
|
||||
|
||||
log = util.get_logger("process")
|
||||
|
@ -133,29 +133,48 @@ async def spawn_processing_threads(data):
|
|||
def process_data(data):
|
||||
to_store = []
|
||||
|
||||
sentiment_time = 0.0
|
||||
regex_time = 0.0
|
||||
polyglot_time = 0.0
|
||||
date_time = 0.0
|
||||
nlp_time = 0.0
|
||||
normalise_time = 0.0
|
||||
hash_time = 0.0
|
||||
normal2_time = 0.0
|
||||
soup_time = 0.0
|
||||
|
||||
total_time = 0.0
|
||||
|
||||
# Initialise sentiment analyser
|
||||
analyzer = SentimentIntensityAnalyzer()
|
||||
for msg in data:
|
||||
|
||||
total_start = time.process_time()
|
||||
# normalise fields
|
||||
start = time.process_time()
|
||||
for key, value in list(msg.items()):
|
||||
if value is None:
|
||||
del msg[key]
|
||||
time_took = (time.process_time() - start) * 1000
|
||||
normalise_time += time_took
|
||||
|
||||
# Remove invalid UTF-8 characters
|
||||
# IRC and Discord
|
||||
start = time.process_time()
|
||||
if "msg" in msg:
|
||||
msg["msg"] = RE_BAD_CHARS.sub("", msg["msg"])
|
||||
|
||||
# 4chan - since we change the attributes below
|
||||
if "com" in msg:
|
||||
msg["com"] = RE_BAD_CHARS.sub("", msg["com"])
|
||||
time_took = (time.process_time() - start) * 1000
|
||||
regex_time += time_took
|
||||
|
||||
if msg["src"] == "4ch":
|
||||
board = msg["net"]
|
||||
thread = msg["channel"]
|
||||
|
||||
# Calculate hash for post
|
||||
start = time.process_time()
|
||||
post_normalised = orjson.dumps(msg, option=orjson.OPT_SORT_KEYS)
|
||||
hash = siphash(hash_key, post_normalised)
|
||||
hash = str(hash)
|
||||
|
@ -169,11 +188,18 @@ def process_data(data):
|
|||
else:
|
||||
msg["type"] = "update"
|
||||
db.r.set(redis_key, hash)
|
||||
time_took = (time.process_time() - start) * 1000
|
||||
hash_time += time_took
|
||||
|
||||
start = time.process_time()
|
||||
for key2, value in list(msg.items()):
|
||||
if key2 in ATTRMAP:
|
||||
msg[ATTRMAP[key2]] = msg[key2]
|
||||
del msg[key2]
|
||||
time_took = (time.process_time() - start) * 1000
|
||||
normal2_time += time_took
|
||||
|
||||
start = time.process_time()
|
||||
if "ts" in msg:
|
||||
old_time = msg["ts"]
|
||||
# '08/30/22(Tue)02:25:37'
|
||||
|
@ -187,15 +213,22 @@ def process_data(data):
|
|||
msg["ts"] = new_ts
|
||||
else:
|
||||
raise Exception("No TS in msg")
|
||||
time_took = (time.process_time() - start) * 1000
|
||||
date_time += time_took
|
||||
|
||||
start = time.process_time()
|
||||
if "msg" in msg:
|
||||
soup = BeautifulSoup(msg["msg"], "html.parser")
|
||||
msg_str = soup.get_text(separator="\n")
|
||||
msg["msg"] = msg_str
|
||||
time_took = (time.process_time() - start) * 1000
|
||||
soup_time += time_took
|
||||
|
||||
# Annotate sentiment/NLP
|
||||
if "msg" in msg:
|
||||
RE_BAD_CHARS.sub("", msg["msg"])
|
||||
# RE_BAD_CHARS.sub("", msg["msg"])
|
||||
# Language
|
||||
start = time.process_time()
|
||||
text = Text(msg["msg"])
|
||||
try:
|
||||
lang_code = text.language.code
|
||||
|
@ -206,22 +239,45 @@ def process_data(data):
|
|||
log.error(f"Error detecting language: {e}")
|
||||
# So below block doesn't fail
|
||||
lang_code = None
|
||||
time_took = (time.process_time() - start) * 1000
|
||||
polyglot_time += time_took
|
||||
|
||||
# Blatant discrimination
|
||||
if lang_code == "en":
|
||||
|
||||
# Sentiment
|
||||
start = time.process_time()
|
||||
vs = analyzer.polarity_scores(str(msg["msg"]))
|
||||
addendum = vs["compound"]
|
||||
msg["sentiment"] = addendum
|
||||
time_took = (time.process_time() - start) * 1000
|
||||
sentiment_time += time_took
|
||||
|
||||
# Tokens
|
||||
n = nlp(msg["msg"])
|
||||
for tag in TAGS:
|
||||
tag_name = tag.lower()
|
||||
tags_flag = [token.lemma_ for token in n if token.pos_ == tag]
|
||||
msg[f"words_{tag_name}"] = tags_flag
|
||||
# Tokens
|
||||
start = time.process_time()
|
||||
tokens = preprocess_string(msg["msg"], CUSTOM_FILTERS)
|
||||
msg["tokens"] = tokens
|
||||
# n = nlp(msg["msg"])
|
||||
# for tag in TAGS:
|
||||
# tag_name = tag.lower()
|
||||
# tags_flag = [token.lemma_ for token in n if token.pos_ == tag]
|
||||
# msg[f"words_{tag_name}"] = tags_flag
|
||||
time_took = (time.process_time() - start) * 1000
|
||||
nlp_time += time_took
|
||||
|
||||
# Add the mutated message to the return buffer
|
||||
to_store.append(msg)
|
||||
total_time += (time.process_time() - total_start) * 1000
|
||||
log.debug("=====================================")
|
||||
log.debug(f"Sentiment: {sentiment_time}")
|
||||
log.debug(f"Regex: {regex_time}")
|
||||
log.debug(f"Polyglot: {polyglot_time}")
|
||||
log.debug(f"Date: {date_time}")
|
||||
log.debug(f"NLP: {nlp_time}")
|
||||
log.debug(f"Normalise: {normalise_time}")
|
||||
log.debug(f"Hash: {hash_time}")
|
||||
log.debug(f"Normal2: {normal2_time}")
|
||||
log.debug(f"Soup: {soup_time}")
|
||||
log.debug(f"Total: {total_time}")
|
||||
log.debug("=====================================")
|
||||
|
||||
return to_store
|
||||
|
|
|
@ -16,7 +16,8 @@ pycld2
|
|||
morfessor
|
||||
six
|
||||
nltk
|
||||
spacy
|
||||
#spacy
|
||||
gensim
|
||||
python-Levenshtein
|
||||
orjson
|
||||
uvloop
|
||||
|
|
Loading…
Reference in New Issue