Time stuff and switch to gensim for tokenisation
This commit is contained in:
parent
40cf0c6430
commit
817bfd8835
|
@ -16,7 +16,8 @@ COPY requirements.txt /code/
|
||||||
COPY discord-patched.tgz /code/
|
COPY discord-patched.tgz /code/
|
||||||
|
|
||||||
RUN python -m venv /venv
|
RUN python -m venv /venv
|
||||||
RUN . /venv/bin/activate && pip install -r requirements.txt && python -m spacy download en_core_web_sm
|
RUN . /venv/bin/activate && pip install -r requirements.txt
|
||||||
|
# && python -m spacy download en_core_web_sm
|
||||||
|
|
||||||
RUN tar xf /code/discord-patched.tgz -C /venv/lib/python3.10/site-packages
|
RUN tar xf /code/discord-patched.tgz -C /venv/lib/python3.10/site-packages
|
||||||
|
|
||||||
|
|
|
@ -15,7 +15,8 @@ pycld2
|
||||||
morfessor
|
morfessor
|
||||||
six
|
six
|
||||||
nltk
|
nltk
|
||||||
spacy
|
#spacy
|
||||||
|
gensim
|
||||||
python-Levenshtein
|
python-Levenshtein
|
||||||
orjson
|
orjson
|
||||||
uvloop
|
uvloop
|
||||||
|
|
|
@ -5,6 +5,9 @@ import random
|
||||||
# For key generation
|
# For key generation
|
||||||
import string
|
import string
|
||||||
|
|
||||||
|
# For timing
|
||||||
|
import time
|
||||||
|
|
||||||
# Squash errors
|
# Squash errors
|
||||||
import warnings
|
import warnings
|
||||||
from concurrent.futures import ProcessPoolExecutor
|
from concurrent.futures import ProcessPoolExecutor
|
||||||
|
@ -16,11 +19,21 @@ from math import ceil
|
||||||
import orjson
|
import orjson
|
||||||
import regex
|
import regex
|
||||||
|
|
||||||
# Tokenisation
|
|
||||||
import spacy
|
|
||||||
|
|
||||||
# For 4chan message parsing
|
# For 4chan message parsing
|
||||||
from bs4 import BeautifulSoup
|
from bs4 import BeautifulSoup
|
||||||
|
|
||||||
|
# Tokenisation
|
||||||
|
# import spacy
|
||||||
|
from gensim.parsing.preprocessing import ( # stem_text,
|
||||||
|
preprocess_string,
|
||||||
|
remove_stopwords,
|
||||||
|
strip_multiple_whitespaces,
|
||||||
|
strip_non_alphanum,
|
||||||
|
strip_numeric,
|
||||||
|
strip_punctuation,
|
||||||
|
strip_short,
|
||||||
|
strip_tags,
|
||||||
|
)
|
||||||
from numpy import array_split
|
from numpy import array_split
|
||||||
from polyglot.detect.base import logger as polyglot_logger
|
from polyglot.detect.base import logger as polyglot_logger
|
||||||
|
|
||||||
|
@ -38,30 +51,17 @@ import util
|
||||||
# 4chan schema
|
# 4chan schema
|
||||||
from schemas.ch4_s import ATTRMAP
|
from schemas.ch4_s import ATTRMAP
|
||||||
|
|
||||||
# For tokenisation
|
CUSTOM_FILTERS = [
|
||||||
# from gensim.parsing.preprocessing import (
|
lambda x: x.lower(),
|
||||||
# strip_tags,
|
strip_tags, #
|
||||||
# strip_punctuation,
|
strip_punctuation, #
|
||||||
# strip_numeric,
|
strip_multiple_whitespaces,
|
||||||
|
strip_numeric,
|
||||||
|
remove_stopwords,
|
||||||
|
strip_short,
|
||||||
# stem_text,
|
# stem_text,
|
||||||
# strip_multiple_whitespaces,
|
strip_non_alphanum, #
|
||||||
# strip_non_alphanum,
|
]
|
||||||
# remove_stopwords,
|
|
||||||
# strip_short,
|
|
||||||
# preprocess_string,
|
|
||||||
# )
|
|
||||||
|
|
||||||
# CUSTOM_FILTERS = [
|
|
||||||
# lambda x: x.lower(),
|
|
||||||
# strip_tags, #
|
|
||||||
# strip_punctuation, #
|
|
||||||
# strip_multiple_whitespaces,
|
|
||||||
# strip_numeric,
|
|
||||||
# remove_stopwords,
|
|
||||||
# strip_short,
|
|
||||||
# #stem_text,
|
|
||||||
# strip_non_alphanum, #
|
|
||||||
# ]
|
|
||||||
|
|
||||||
RE_BAD_CHARS = regex.compile(r"[\p{Cc}\p{Cs}]+")
|
RE_BAD_CHARS = regex.compile(r"[\p{Cc}\p{Cs}]+")
|
||||||
|
|
||||||
|
@ -70,8 +70,8 @@ polyglot_logger.setLevel("ERROR")
|
||||||
warnings.filterwarnings("ignore", category=UserWarning, module="bs4")
|
warnings.filterwarnings("ignore", category=UserWarning, module="bs4")
|
||||||
|
|
||||||
|
|
||||||
TAGS = ["NOUN", "ADJ", "VERB", "ADV"]
|
# TAGS = ["NOUN", "ADJ", "VERB", "ADV"]
|
||||||
nlp = spacy.load("en_core_web_sm", disable=["parser", "ner"])
|
# nlp = spacy.load("en_core_web_sm", disable=["parser", "ner"])
|
||||||
|
|
||||||
|
|
||||||
log = util.get_logger("process")
|
log = util.get_logger("process")
|
||||||
|
@ -133,29 +133,48 @@ async def spawn_processing_threads(data):
|
||||||
def process_data(data):
|
def process_data(data):
|
||||||
to_store = []
|
to_store = []
|
||||||
|
|
||||||
|
sentiment_time = 0.0
|
||||||
|
regex_time = 0.0
|
||||||
|
polyglot_time = 0.0
|
||||||
|
date_time = 0.0
|
||||||
|
nlp_time = 0.0
|
||||||
|
normalise_time = 0.0
|
||||||
|
hash_time = 0.0
|
||||||
|
normal2_time = 0.0
|
||||||
|
soup_time = 0.0
|
||||||
|
|
||||||
|
total_time = 0.0
|
||||||
|
|
||||||
# Initialise sentiment analyser
|
# Initialise sentiment analyser
|
||||||
analyzer = SentimentIntensityAnalyzer()
|
analyzer = SentimentIntensityAnalyzer()
|
||||||
for msg in data:
|
for msg in data:
|
||||||
|
total_start = time.process_time()
|
||||||
# normalise fields
|
# normalise fields
|
||||||
|
start = time.process_time()
|
||||||
for key, value in list(msg.items()):
|
for key, value in list(msg.items()):
|
||||||
if value is None:
|
if value is None:
|
||||||
del msg[key]
|
del msg[key]
|
||||||
|
time_took = (time.process_time() - start) * 1000
|
||||||
|
normalise_time += time_took
|
||||||
|
|
||||||
# Remove invalid UTF-8 characters
|
# Remove invalid UTF-8 characters
|
||||||
# IRC and Discord
|
# IRC and Discord
|
||||||
|
start = time.process_time()
|
||||||
if "msg" in msg:
|
if "msg" in msg:
|
||||||
msg["msg"] = RE_BAD_CHARS.sub("", msg["msg"])
|
msg["msg"] = RE_BAD_CHARS.sub("", msg["msg"])
|
||||||
|
|
||||||
# 4chan - since we change the attributes below
|
# 4chan - since we change the attributes below
|
||||||
if "com" in msg:
|
if "com" in msg:
|
||||||
msg["com"] = RE_BAD_CHARS.sub("", msg["com"])
|
msg["com"] = RE_BAD_CHARS.sub("", msg["com"])
|
||||||
|
time_took = (time.process_time() - start) * 1000
|
||||||
|
regex_time += time_took
|
||||||
|
|
||||||
if msg["src"] == "4ch":
|
if msg["src"] == "4ch":
|
||||||
board = msg["net"]
|
board = msg["net"]
|
||||||
thread = msg["channel"]
|
thread = msg["channel"]
|
||||||
|
|
||||||
# Calculate hash for post
|
# Calculate hash for post
|
||||||
|
start = time.process_time()
|
||||||
post_normalised = orjson.dumps(msg, option=orjson.OPT_SORT_KEYS)
|
post_normalised = orjson.dumps(msg, option=orjson.OPT_SORT_KEYS)
|
||||||
hash = siphash(hash_key, post_normalised)
|
hash = siphash(hash_key, post_normalised)
|
||||||
hash = str(hash)
|
hash = str(hash)
|
||||||
|
@ -169,11 +188,18 @@ def process_data(data):
|
||||||
else:
|
else:
|
||||||
msg["type"] = "update"
|
msg["type"] = "update"
|
||||||
db.r.set(redis_key, hash)
|
db.r.set(redis_key, hash)
|
||||||
|
time_took = (time.process_time() - start) * 1000
|
||||||
|
hash_time += time_took
|
||||||
|
|
||||||
|
start = time.process_time()
|
||||||
for key2, value in list(msg.items()):
|
for key2, value in list(msg.items()):
|
||||||
if key2 in ATTRMAP:
|
if key2 in ATTRMAP:
|
||||||
msg[ATTRMAP[key2]] = msg[key2]
|
msg[ATTRMAP[key2]] = msg[key2]
|
||||||
del msg[key2]
|
del msg[key2]
|
||||||
|
time_took = (time.process_time() - start) * 1000
|
||||||
|
normal2_time += time_took
|
||||||
|
|
||||||
|
start = time.process_time()
|
||||||
if "ts" in msg:
|
if "ts" in msg:
|
||||||
old_time = msg["ts"]
|
old_time = msg["ts"]
|
||||||
# '08/30/22(Tue)02:25:37'
|
# '08/30/22(Tue)02:25:37'
|
||||||
|
@ -187,15 +213,22 @@ def process_data(data):
|
||||||
msg["ts"] = new_ts
|
msg["ts"] = new_ts
|
||||||
else:
|
else:
|
||||||
raise Exception("No TS in msg")
|
raise Exception("No TS in msg")
|
||||||
|
time_took = (time.process_time() - start) * 1000
|
||||||
|
date_time += time_took
|
||||||
|
|
||||||
|
start = time.process_time()
|
||||||
if "msg" in msg:
|
if "msg" in msg:
|
||||||
soup = BeautifulSoup(msg["msg"], "html.parser")
|
soup = BeautifulSoup(msg["msg"], "html.parser")
|
||||||
msg_str = soup.get_text(separator="\n")
|
msg_str = soup.get_text(separator="\n")
|
||||||
msg["msg"] = msg_str
|
msg["msg"] = msg_str
|
||||||
|
time_took = (time.process_time() - start) * 1000
|
||||||
|
soup_time += time_took
|
||||||
|
|
||||||
# Annotate sentiment/NLP
|
# Annotate sentiment/NLP
|
||||||
if "msg" in msg:
|
if "msg" in msg:
|
||||||
RE_BAD_CHARS.sub("", msg["msg"])
|
# RE_BAD_CHARS.sub("", msg["msg"])
|
||||||
# Language
|
# Language
|
||||||
|
start = time.process_time()
|
||||||
text = Text(msg["msg"])
|
text = Text(msg["msg"])
|
||||||
try:
|
try:
|
||||||
lang_code = text.language.code
|
lang_code = text.language.code
|
||||||
|
@ -206,22 +239,45 @@ def process_data(data):
|
||||||
log.error(f"Error detecting language: {e}")
|
log.error(f"Error detecting language: {e}")
|
||||||
# So below block doesn't fail
|
# So below block doesn't fail
|
||||||
lang_code = None
|
lang_code = None
|
||||||
|
time_took = (time.process_time() - start) * 1000
|
||||||
|
polyglot_time += time_took
|
||||||
|
|
||||||
# Blatant discrimination
|
# Blatant discrimination
|
||||||
if lang_code == "en":
|
if lang_code == "en":
|
||||||
|
|
||||||
# Sentiment
|
# Sentiment
|
||||||
|
start = time.process_time()
|
||||||
vs = analyzer.polarity_scores(str(msg["msg"]))
|
vs = analyzer.polarity_scores(str(msg["msg"]))
|
||||||
addendum = vs["compound"]
|
addendum = vs["compound"]
|
||||||
msg["sentiment"] = addendum
|
msg["sentiment"] = addendum
|
||||||
|
time_took = (time.process_time() - start) * 1000
|
||||||
|
sentiment_time += time_took
|
||||||
|
|
||||||
# Tokens
|
# Tokens
|
||||||
n = nlp(msg["msg"])
|
start = time.process_time()
|
||||||
for tag in TAGS:
|
tokens = preprocess_string(msg["msg"], CUSTOM_FILTERS)
|
||||||
tag_name = tag.lower()
|
msg["tokens"] = tokens
|
||||||
tags_flag = [token.lemma_ for token in n if token.pos_ == tag]
|
# n = nlp(msg["msg"])
|
||||||
msg[f"words_{tag_name}"] = tags_flag
|
# for tag in TAGS:
|
||||||
|
# tag_name = tag.lower()
|
||||||
|
# tags_flag = [token.lemma_ for token in n if token.pos_ == tag]
|
||||||
|
# msg[f"words_{tag_name}"] = tags_flag
|
||||||
|
time_took = (time.process_time() - start) * 1000
|
||||||
|
nlp_time += time_took
|
||||||
|
|
||||||
# Add the mutated message to the return buffer
|
# Add the mutated message to the return buffer
|
||||||
to_store.append(msg)
|
to_store.append(msg)
|
||||||
|
total_time += (time.process_time() - total_start) * 1000
|
||||||
|
log.debug("=====================================")
|
||||||
|
log.debug(f"Sentiment: {sentiment_time}")
|
||||||
|
log.debug(f"Regex: {regex_time}")
|
||||||
|
log.debug(f"Polyglot: {polyglot_time}")
|
||||||
|
log.debug(f"Date: {date_time}")
|
||||||
|
log.debug(f"NLP: {nlp_time}")
|
||||||
|
log.debug(f"Normalise: {normalise_time}")
|
||||||
|
log.debug(f"Hash: {hash_time}")
|
||||||
|
log.debug(f"Normal2: {normal2_time}")
|
||||||
|
log.debug(f"Soup: {soup_time}")
|
||||||
|
log.debug(f"Total: {total_time}")
|
||||||
|
log.debug("=====================================")
|
||||||
|
|
||||||
return to_store
|
return to_store
|
||||||
|
|
|
@ -16,7 +16,8 @@ pycld2
|
||||||
morfessor
|
morfessor
|
||||||
six
|
six
|
||||||
nltk
|
nltk
|
||||||
spacy
|
#spacy
|
||||||
|
gensim
|
||||||
python-Levenshtein
|
python-Levenshtein
|
||||||
orjson
|
orjson
|
||||||
uvloop
|
uvloop
|
||||||
|
|
Loading…
Reference in New Issue