Fix merge conflict

This commit is contained in:
Mark Veidemanis 2022-09-16 17:45:24 +01:00
commit cb11ce9b12
14 changed files with 581 additions and 243 deletions

164
db.py
View File

@ -1,18 +1,15 @@
from math import ceil
import random
import aioredis
import manticoresearch
import ujson
from manticoresearch.rest import ApiException
from numpy import array_split
import orjson
# Kafka
from aiokafka import AIOKafkaProducer
from redis import StrictRedis
import util
from schemas import mc_s
configuration = manticoresearch.Configuration(host="http://monolith-db-1:9308")
api_client = manticoresearch.ApiClient(configuration)
api_instance = manticoresearch.IndexApi(api_client)
# KAFKA_TOPIC = "msg"
log = util.get_logger("db")
@ -37,120 +34,77 @@ TYPES_MAIN = [
]
TYPES_META = ["who"]
TYPES_INT = ["conn", "highlight", "znc", "query", "self"]
KEYPREFIX = "queue."
def store_message(msg):
"""
Store a message into Manticore
:param msg: dict
"""
# Duplicated to avoid extra function call
async def store_kafka_batch(data):
log.debug(f"Storing Kafka batch of {len(data)} messages")
producer = AIOKafkaProducer(bootstrap_servers="kafka:9092")
await producer.start()
batch = producer.create_batch()
for msg in data:
if msg["type"] in TYPES_MAIN:
index = "main"
schema = mc_s.schema_main
# schema = mc_s.schema_main
elif msg["type"] in TYPES_META:
index = "meta"
schema = mc_s.schema_meta
# schema = mc_s.schema_meta
elif msg["type"] in TYPES_INT:
index = "internal"
schema = mc_s.schema_int
# schema = mc_s.schema_int
KAFKA_TOPIC = index
# normalise fields
for key, value in list(msg.items()):
if value is None:
del msg[key]
if key in schema:
if isinstance(value, int):
if schema[key].startswith("string") or schema[key].startswith("text"):
msg[key] = str(value)
# if key in schema:
# if isinstance(value, int):
# if schema[key].startswith("string") or schema[key].startswith(
# "text"
# ):
# msg[key] = str(value)
body = orjson.dumps(msg)
# orjson returns bytes
# body = str.encode(message)
if "ts" not in msg:
raise Exception("No TS in msg")
metadata = batch.append(key=None, value=body, timestamp=msg["ts"])
if metadata is None:
partitions = await producer.partitions_for(KAFKA_TOPIC)
partition = random.choice(tuple(partitions))
await producer.send_batch(batch, KAFKA_TOPIC, partition=partition)
log.debug(f"{batch.record_count()} messages sent to partition {partition}")
batch = producer.create_batch()
continue
body = [{"insert": {"index": index, "doc": msg}}]
body_post = ""
for item in body:
body_post += ujson.dumps(item)
body_post += "\n"
# print(body_post)
try:
# Bulk index operations
api_response = api_instance.bulk(body_post) # , async_req=True
# print(api_response)
except ApiException as e:
print("Exception when calling IndexApi->bulk: %s\n" % e)
print("ATTEMPT", body_post)
partitions = await producer.partitions_for(KAFKA_TOPIC)
partition = random.choice(tuple(partitions))
await producer.send_batch(batch, KAFKA_TOPIC, partition=partition)
log.debug(f"{batch.record_count()} messages sent to partition {partition}")
await producer.stop()
def store_message_bulk(data):
async def queue_message(msg):
"""
Store a message into Manticore
:param msg: dict
Queue a message on the Redis buffer.
"""
if not data:
return
# 10000: maximum inserts we can submit to
# Manticore as of Sept 2022
split_posts = array_split(data, ceil(len(data) / 10000))
for messages in split_posts:
total = []
for msg in messages:
# Duplicated to avoid extra function call (see above)
if msg["type"] in TYPES_MAIN:
index = "main"
schema = mc_s.schema_main
elif msg["type"] in TYPES_META:
index = "meta"
schema = mc_s.schema_meta
elif msg["type"] in TYPES_INT:
index = "internal"
schema = mc_s.schema_int
# normalise fields
for key, value in list(msg.items()):
if value is None:
del msg[key]
if key in schema:
if isinstance(value, int):
if schema[key].startswith("string") or schema[key].startswith(
"text"
):
msg[key] = str(value)
src = msg["src"]
message = orjson.dumps(msg)
body = {"insert": {"index": index, "doc": msg}}
total.append(body)
body_post = ""
for item in total:
body_post += ujson.dumps(item)
body_post += "\n"
# print(body_post)
try:
# Bulk index operations
api_response = api_instance.bulk(body_post) # , async_req=True
print(api_response)
except ApiException as e:
print("Exception when calling IndexApi->bulk: %s\n" % e)
print("ATTEMPT", body_post)
key = f"{KEYPREFIX}{src}"
# log.debug(f"Queueing single message of string length {len(message)}")
await ar.sadd(key, message)
def update_schema():
pass
async def queue_message_bulk(data):
"""
Queue multiple messages on the Redis buffer.
"""
# log.debug(f"Queueing message batch of length {len(data)}")
for msg in data:
src = msg["src"]
message = orjson.dumps(msg)
def create_index(api_client):
util_instance = manticoresearch.UtilsApi(api_client)
schemas = {
"main": mc_s.schema_main,
"meta": mc_s.schema_meta,
"internal": mc_s.schema_int,
}
for name, schema in schemas.items():
schema_types = ", ".join([f"{k} {v}" for k, v in schema.items()])
create_query = (
f"create table if not exists {name}({schema_types}) engine='columnar'"
)
print("Schema types", create_query)
util_instance.sql(create_query)
create_index(api_client)
update_schema()
key = f"{KEYPREFIX}{src}"
await ar.sadd(key, message)

View File

@ -1,4 +1,13 @@
version: "2"
version: "2.2"
volumes:
metadata_data: {}
middle_var: {}
historical_var: {}
broker_var: {}
coordinator_var: {}
router_var: {}
druid_shared: {}
services:
app:
@ -11,7 +20,15 @@ services:
volumes_from:
- tmp
depends_on:
- db
broker:
condition: service_started
kafka:
condition: service_healthy
tmp:
condition: service_started
redis:
condition: service_healthy
# - db
threshold:
image: pathogen/threshold:latest
@ -33,34 +50,194 @@ services:
volumes_from:
- tmp
depends_on:
- tmp
- redis
tmp:
condition: service_started
redis:
condition: service_healthy
db:
# db:
#image: pathogen/manticore:kibana
image: manticoresearch/manticore:latest
# image: manticoresearch/manticore:latest
#build:
# context: ./docker/manticore
# args:
# DEV: 1
restart: always
# restart: always
turnilo:
container_name: turnilo
image: uchhatre/turnilo:latest
ports:
- 9308
- 9312
- 9306
ulimits:
nproc: 65535
nofile:
soft: 65535
hard: 65535
memlock:
soft: -1
hard: -1
- 9093:9090
environment:
- MCL=1
- DRUID_BROKER_URL=http://broker:8082
depends_on:
- broker
metabase:
container_name: metabase
image: metabase/metabase:latest
ports:
- 3001:3000
depends_on:
- broker
postgres:
container_name: postgres
image: postgres:latest
volumes:
- ./docker/data:/var/lib/manticore
- ./docker/manticore.conf:/etc/manticoresearch/manticore.conf
- metadata_data:/var/lib/postgresql/data
environment:
- POSTGRES_PASSWORD=FoolishPassword
- POSTGRES_USER=druid
- POSTGRES_DB=druid
# Need 3.5 or later for container nodes
zookeeper:
container_name: zookeeper
image: zookeeper:3.5
ports:
- "2181:2181"
environment:
- ZOO_MY_ID=1
kafka:
image: bitnami/kafka
depends_on:
- zookeeper
- broker
ports:
- 29092:29092
- 9092:9092
environment:
KAFKA_BROKER_ID: 1
KAFKA_ZOOKEEPER_CONNECT: zookeeper:2181
KAFKA_ADVERTISED_LISTENERS: PLAINTEXT://kafka:9092
#KAFKA_LISTENER_SECURITY_PROTOCOL_MAP: PLAINTEXT:PLAINTEXT,PLAINTEXT_HOST:PLAINTEXT
KAFKA_INTER_BROKER_LISTENER_NAME: PLAINTEXT
KAFKA_OFFSETS_TOPIC_REPLICATION_FACTOR: 1
ALLOW_PLAINTEXT_LISTENER: yes
# healthcheck:
# test: ["CMD-SHELL", "kafka-topics.sh --bootstrap-server 127.0.0.1:9092 --topic main --describe"]
# interval: 2s
# timeout: 2s
# retries: 15
healthcheck:
test: ["CMD", "kafka-topics.sh", "--list", "--bootstrap-server", "kafka:9092"]
start_period: 15s
interval: 2s
timeout: 5s
retries: 30
coordinator:
image: apache/druid:0.23.0
container_name: coordinator
volumes:
- druid_shared:/opt/shared
- coordinator_var:/opt/druid/var
depends_on:
- zookeeper
- postgres
ports:
- "8081:8081"
command:
- coordinator
env_file:
- environment
broker:
image: apache/druid:0.23.0
container_name: broker
volumes:
- broker_var:/opt/druid/var
depends_on:
- zookeeper
- postgres
- coordinator
ports:
- "8082:8082"
command:
- broker
env_file:
- environment
historical:
image: apache/druid:0.23.0
container_name: historical
volumes:
- druid_shared:/opt/shared
- historical_var:/opt/druid/var
depends_on:
- zookeeper
- postgres
- coordinator
ports:
- "8083:8083"
command:
- historical
env_file:
- environment
middlemanager:
image: apache/druid:0.23.0
container_name: middlemanager
volumes:
- druid_shared:/opt/shared
- middle_var:/opt/druid/var
depends_on:
- zookeeper
- postgres
- coordinator
ports:
- "8091:8091"
- "8100-8105:8100-8105"
command:
- middleManager
env_file:
- environment
router:
image: apache/druid:0.23.0
container_name: router
volumes:
- router_var:/opt/druid/var
depends_on:
- zookeeper
- postgres
- coordinator
ports:
- "8888:8888"
command:
- router
env_file:
- environment
# db:
# #image: pathogen/manticore:kibana
# image: manticoresearch/manticore:dev
# #build:
# # context: ./docker/manticore
# # args:
# # DEV: 1
# restart: always
# ports:
# - 9308
# - 9312
# - 9306
# ulimits:
# nproc: 65535
# nofile:
# soft: 65535
# hard: 65535
# memlock:
# soft: -1
# hard: -1
# environment:
# - MCL=1
# volumes:
# - ./docker/data:/var/lib/manticore
# - ./docker/manticore.conf:/etc/manticoresearch/manticore.conf
tmp:
image: busybox
@ -80,6 +257,11 @@ services:
- ${PORTAINER_GIT_DIR}/docker/redis.conf:/etc/redis.conf
volumes_from:
- tmp
healthcheck:
test: "redis-cli -s /var/run/redis/redis.sock ping"
interval: 2s
timeout: 2s
retries: 15
networks:
default:

View File

@ -16,7 +16,7 @@ COPY requirements.txt /code/
COPY discord-patched.tgz /code/
RUN python -m venv /venv
RUN . /venv/bin/activate && pip install -r requirements.txt
RUN . /venv/bin/activate && pip install -r requirements.txt && python -m spacy download en_core_web_sm
RUN tar xf /code/discord-patched.tgz -C /venv/lib/python3.10/site-packages

View File

@ -4,7 +4,18 @@ redis
siphashc
aiohttp[speedups]
python-dotenv
manticoresearch
#manticoresearch
numpy
ujson
aioredis[hiredis]
aiokafka
vaderSentiment
polyglot
pyicu
pycld2
morfessor
six
nltk
spacy
python-Levenshtein
orjson

52
environment Normal file
View File

@ -0,0 +1,52 @@
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#
# Java tuning
DRUID_XMX=1g
DRUID_XMS=1g
DRUID_MAXNEWSIZE=250m
DRUID_NEWSIZE=250m
DRUID_MAXDIRECTMEMORYSIZE=6172m
druid_emitter_logging_logLevel=debug
druid_extensions_loadList=["druid-histogram", "druid-datasketches", "druid-lookups-cached-global", "postgresql-metadata-storage", "druid-kafka-indexing-service"]
druid_zk_service_host=zookeeper
druid_metadata_storage_host=
druid_metadata_storage_type=postgresql
druid_metadata_storage_connector_connectURI=jdbc:postgresql://postgres:5432/druid
druid_metadata_storage_connector_user=druid
druid_metadata_storage_connector_password=FoolishPassword
druid_coordinator_balancer_strategy=cachingCost
druid_indexer_runner_javaOptsArray=["-server", "-Xmx1g", "-Xms1g", "-XX:MaxDirectMemorySize=3g", "-Duser.timezone=UTC", "-Dfile.encoding=UTF-8", "-Djava.util.logging.manager=org.apache.logging.log4j.jul.LogManager"]
druid_indexer_fork_property_druid_processing_buffer_sizeBytes=256MiB
druid_storage_type=local
druid_storage_storageDirectory=/opt/shared/segments
druid_indexer_logs_type=file
druid_indexer_logs_directory=/opt/shared/indexing-logs
druid_processing_numThreads=2
druid_processing_numMergeBuffers=2
DRUID_LOG4J=<?xml version="1.0" encoding="UTF-8" ?><Configuration status="WARN"><Appenders><Console name="Console" target="SYSTEM_OUT"><PatternLayout pattern="%d{ISO8601} %p [%t] %c - %m%n"/></Console></Appenders><Loggers><Root level="info"><AppenderRef ref="Console"/></Root><Logger name="org.apache.druid.jetty.RequestLog" additivity="false" level="DEBUG"><AppenderRef ref="Console"/></Logger></Loggers></Configuration>

0
event_log.txt Normal file
View File

View File

@ -6,13 +6,6 @@ from sources.ch4 import Chan4
from sources.dis import DiscordClient
from sources.ingest import Ingest
# For development
# if not getenv("DISCORD_TOKEN", None):
# print("Could not get Discord token, attempting load from .env")
# from dotenv import load_dotenv
# load_dotenv()
log = util.get_logger("monolith")
modules_enabled = getenv("MODULES_ENABLED", False)
@ -26,7 +19,6 @@ async def main(loop):
log.info("Starting Discord handler.")
client = DiscordClient()
loop.create_task(client.start(token))
# client.run(token)
log.info("Starting 4chan handler.")
chan = Chan4()

0
processing/__init__.py Normal file
View File

202
processing/process.py Normal file
View File

@ -0,0 +1,202 @@
import asyncio
import os
import random
# For key generation
import string
# Squash errors
import warnings
from concurrent.futures import ProcessPoolExecutor
# For timestamp processing
from datetime import datetime
from math import ceil
import orjson
# Tokenisation
import spacy
# For 4chan message parsing
from bs4 import BeautifulSoup
from numpy import array_split
from polyglot.detect.base import logger as polyglot_logger
# For NLP
from polyglot.text import Text
from pycld2 import error as cld2_error
from siphashc import siphash
# For sentiment
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
import db
import util
# 4chan schema
from schemas.ch4_s import ATTRMAP
# For tokenisation
# from gensim.parsing.preprocessing import (
# strip_tags,
# strip_punctuation,
# strip_numeric,
# stem_text,
# strip_multiple_whitespaces,
# strip_non_alphanum,
# remove_stopwords,
# strip_short,
# preprocess_string,
# )
# CUSTOM_FILTERS = [
# lambda x: x.lower(),
# strip_tags, #
# strip_punctuation, #
# strip_multiple_whitespaces,
# strip_numeric,
# remove_stopwords,
# strip_short,
# #stem_text,
# strip_non_alphanum, #
# ]
# Squash errors
polyglot_logger.setLevel("ERROR")
warnings.filterwarnings("ignore", category=UserWarning, module="bs4")
TAGS = ["NOUN", "ADJ", "VERB", "ADV"]
nlp = spacy.load("en_core_web_sm", disable=["parser", "ner"])
log = util.get_logger("process")
# Maximum number of CPU threads to use for post processing
CPU_THREADS = os.cpu_count()
p = ProcessPoolExecutor(CPU_THREADS)
def get_hash_key():
hash_key = db.r.get("hashing_key")
if not hash_key:
letters = string.ascii_lowercase
hash_key = "".join(random.choice(letters) for i in range(16))
log.debug(f"Created new hash key: {hash_key}")
db.r.set("hashing_key", hash_key)
else:
hash_key = hash_key.decode("ascii")
log.debug(f"Decoded hash key: {hash_key}")
return hash_key
hash_key = get_hash_key()
@asyncio.coroutine
async def spawn_processing_threads(data):
len_data = len(data)
log.debug(f"Spawning processing threads for batch of {len_data} messages")
loop = asyncio.get_event_loop()
tasks = []
if len(data) < CPU_THREADS:
split_data = [data]
else:
msg_per_core = int(len(data) / CPU_THREADS)
split_data = array_split(data, ceil(len(data) / msg_per_core))
for index, split in enumerate(split_data):
log.debug(f"Delegating processing of {len(split)} messages to thread {index}")
task = loop.run_in_executor(p, process_data, data)
tasks.append(task)
results = [await task for task in tasks]
log.debug(f"Results from processing of {len_data} messages: {len(results)}")
# Join the results back from the split list
flat_list = [item for sublist in results for item in sublist]
await db.store_kafka_batch(flat_list)
log.debug(f"Finished processing {len_data} messages")
def process_data(data):
to_store = []
# Initialise sentiment analyser
analyzer = SentimentIntensityAnalyzer()
for msg in data:
if msg["src"] == "4ch":
board = msg["net"]
thread = msg["channel"]
# Calculate hash for post
post_normalised = orjson.dumps(msg, option=orjson.OPT_SORT_KEYS)
hash = siphash(hash_key, post_normalised)
hash = str(hash)
redis_key = f"cache.{board}.{thread}.{msg['no']}"
key_content = db.r.get(redis_key)
if key_content:
key_content = key_content.decode("ascii")
if key_content == hash:
# This deletes the message since the append at the end won't be hit
continue
else:
msg["type"] = "update"
db.r.set(redis_key, hash)
for key2, value in list(msg.items()):
if key2 in ATTRMAP:
msg[ATTRMAP[key2]] = msg[key2]
del msg[key2]
if "ts" in msg:
old_time = msg["ts"]
# '08/30/22(Tue)02:25:37'
time_spl = old_time.split(":")
if len(time_spl) == 3:
old_ts = datetime.strptime(old_time, "%m/%d/%y(%a)%H:%M:%S")
else:
old_ts = datetime.strptime(old_time, "%m/%d/%y(%a)%H:%M")
# new_ts = old_ts.isoformat()
new_ts = int(old_ts.timestamp())
msg["ts"] = new_ts
else:
raise Exception("No TS in msg")
if "msg" in msg:
soup = BeautifulSoup(msg["msg"], "html.parser")
msg_str = soup.get_text(separator="\n")
msg["msg"] = msg_str
# Annotate sentiment/NLP
if "msg" in msg:
# Language
text = Text(msg["msg"])
try:
lang_code = text.language.code
lang_name = text.language.name
msg["lang_code"] = lang_code
msg["lang_name"] = lang_name
except cld2_error as e:
log.error(f"Error detecting language: {e}")
# So below block doesn't fail
lang_code = None
# Blatant discrimination
if lang_code == "en":
# Sentiment
vs = analyzer.polarity_scores(str(msg["msg"]))
addendum = vs["compound"]
msg["sentiment"] = addendum
# Tokens
n = nlp(msg["msg"])
for tag in TAGS:
tag_name = tag.lower()
tags_flag = [token.lemma_ for token in n if token.pos_ == tag]
msg[f"words_{tag_name}"] = tags_flag
# Add the mutated message to the return buffer
to_store.append(msg)
return to_store

View File

@ -5,7 +5,18 @@ redis
siphashc
aiohttp[speedups]
python-dotenv
manticoresearch
#manticoresearch
numpy
ujson
aioredis[hiredis]
aiokafka
vaderSentiment
polyglot
pyicu
pycld2
morfessor
six
nltk
spacy
python-Levenshtein
orjson

View File

@ -2,41 +2,30 @@
import asyncio
import random
import string
from concurrent.futures import ProcessPoolExecutor
from datetime import datetime
from math import ceil
import aiohttp
import ujson
from bs4 import BeautifulSoup
from numpy import array_split
from siphashc import siphash
import db
import util
from schemas.ch4_s import ATTRMAP
# CONFIGURATION #
# Number of 4chan threads to request at once
THREADS_CONCURRENT = 100
THREADS_CONCURRENT = 1000
# Seconds to wait between every THREADS_CONCURRENT requests
THREADS_DELAY = 0.8
THREADS_DELAY = 0.1
# Seconds to wait between crawls
CRAWL_DELAY = 5
# Semaphore value ?
THREADS_SEMAPHORE = 100
# Maximum number of CPU threads to use for post processing
CPU_THREADS = 1
THREADS_SEMAPHORE = 1000
# CONFIGURATION END #
p = ProcessPoolExecutor(CPU_THREADS)
class Chan4(object):
"""
@ -83,10 +72,12 @@ class Chan4(object):
self.log.debug(f"Got boards: {self.boards}")
async def get_thread_lists(self, boards):
self.log.debug(f"Getting thread list for {boards}")
# self.log.debug(f"Getting thread list for {boards}")
board_urls = {board: f"{board}/catalog.json" for board in boards}
responses = await self.api_call(board_urls)
to_get = []
flat_map = [board for board, thread in responses]
self.log.debug(f"Got thread list for {flat_map}: {len(responses)}")
for mapped, response in responses:
if not response:
continue
@ -95,7 +86,6 @@ class Chan4(object):
no = threads["no"]
to_get.append((mapped, no))
self.log.info(f"Got thread list for {mapped}: {len(response)}")
if not to_get:
return
split_threads = array_split(to_get, ceil(len(to_get) / THREADS_CONCURRENT))
@ -122,96 +112,36 @@ class Chan4(object):
(board, thread): f"{board}/thread/{thread}.json"
for board, thread in thread_list
}
self.log.debug(f"Getting information for threads: {thread_urls}")
# self.log.debug(f"Getting information for threads: {thread_urls}")
responses = await self.api_call(thread_urls)
self.log.debug(f"Got information for threads: {thread_urls}")
self.log.debug(f"Got information for {len(responses)} threads")
all_posts = {}
for mapped, response in responses:
if not response:
continue
board, thread = mapped
self.log.debug(f"Got thread content for thread {thread} on board {board}")
all_posts[mapped] = response["posts"]
# Split into 10,000 chunks
if not all_posts:
return
threads_per_core = int(len(all_posts) / CPU_THREADS)
for i in range(CPU_THREADS):
new_dict = {}
pulled_posts = self.take_items(all_posts, threads_per_core)
for k, v in pulled_posts:
if k in new_dict:
new_dict[k].append(v)
else:
new_dict[k] = [v]
await self.handle_posts_thread(new_dict)
# print("VAL", ceil(len(all_posts) / threads_per_core))
# split_posts = array_split(all_posts, ceil(len(all_posts) / threads_per_core))
# print("THREADS PER CORE SPLIT", len(split_posts))
# # print("SPLIT CHUNK", len(split_posts))
# for posts in split_posts:
# print("SPAWNED THREAD TO PROCESS", len(posts), "POSTS")
# await self.handle_posts_thread(posts)
await self.handle_posts(all_posts)
# await self.handle_posts_thread(all_posts)
@asyncio.coroutine
def handle_posts_thread(self, posts):
loop = asyncio.get_event_loop()
yield from loop.run_in_executor(p, self.handle_posts, posts)
def handle_posts(self, posts):
async def handle_posts(self, posts):
to_store = []
for key, post_list in posts.items():
board, thread = key
for index, post in enumerate(post_list):
posts[key][index]["type"] = "msg"
# Calculate hash for post
post_normalised = ujson.dumps(post, sort_keys=True)
hash = siphash(self.hash_key, post_normalised)
hash = str(hash)
redis_key = f"cache.{board}.{thread}.{post['no']}"
key_content = db.r.get(redis_key)
if key_content:
key_content = key_content.decode("ascii")
if key_content == hash:
continue
else:
posts[key][index]["type"] = "update"
db.r.set(redis_key, hash)
for key2, value in list(post.items()):
if key2 in ATTRMAP:
post[ATTRMAP[key2]] = posts[key][index][key2]
del posts[key][index][key2]
if "ts" in post:
old_time = posts[key][index]["ts"]
# '08/30/22(Tue)02:25:37'
time_spl = old_time.split(":")
if len(time_spl) == 3:
old_ts = datetime.strptime(old_time, "%m/%d/%y(%a)%H:%M:%S")
else:
old_ts = datetime.strptime(old_time, "%m/%d/%y(%a)%H:%M")
# new_ts = old_ts.isoformat()
new_ts = int(old_ts.timestamp())
posts[key][index]["ts"] = new_ts
if "msg" in post:
soup = BeautifulSoup(posts[key][index]["msg"], "html.parser")
msg = soup.get_text(separator="\n")
posts[key][index]["msg"] = msg
posts[key][index]["src"] = "4ch"
posts[key][index]["net"] = board
posts[key][index]["channel"] = thread
to_store.append(posts[key][index])
# print({name_map[name]: val for name, val in post.items()})
# print(f"Got posts: {len(posts)}")
if to_store:
db.store_message_bulk(to_store)
await db.queue_message_bulk(to_store)
async def fetch(self, url, session, mapped):
async with session.get(url) as response:
@ -235,7 +165,7 @@ class Chan4(object):
async with aiohttp.ClientSession(connector=connector) as session:
for mapped, method in methods.items():
url = f"{self.api_endpoint}/{method}"
self.log.debug(f"GET {url}")
# self.log.debug(f"GET {url}")
task = asyncio.create_task(self.bound_fetch(sem, url, session, mapped))
# task = asyncio.ensure_future(self.bound_fetch(sem, url, session))
tasks.append(task)

View File

@ -41,4 +41,4 @@ class DiscordClient(discord.Client):
a["type"] = "msg"
a["src"] = "dis"
db.store_message(a)
await db.queue_message(a)

View File

@ -1,15 +1,20 @@
import asyncio
import ujson
import orjson
import db
import util
from processing import process
SOURCES = ["irc"]
SOURCES = ["4ch", "irc", "dis"]
KEYPREFIX = "queue."
CHUNK_SIZE = 1000
# Chunk size per source (divide by len(SOURCES) for total)
CHUNK_SIZE = 9000
ITER_DELAY = 0.5
log = util.get_logger("ingest")
class Ingest(object):
def __init__(self):
@ -18,19 +23,18 @@ class Ingest(object):
async def run(self):
while True:
await self.process_chunk()
await self.get_chunk()
await asyncio.sleep(ITER_DELAY)
async def process_chunk(self):
async def get_chunk(self):
items = []
for source in SOURCES:
key = f"{KEYPREFIX}{source}"
chunk = await db.ar.spop(key, CHUNK_SIZE)
if not chunk:
continue
self.log.info(f"Got chunk: {chunk}")
for item in chunk:
item = ujson.loads(item)
self.log.info(f"Got item: {item}")
item = orjson.loads(item)
items.append(item)
db.store_message_bulk(items)
if items:
await process.spawn_processing_threads(items)

View File

@ -3,7 +3,7 @@ import logging
log = logging.getLogger("util")
debug = False
debug = True
# Color definitions
BLACK, RED, GREEN, YELLOW, BLUE, MAGENTA, CYAN, WHITE = range(8)