Implement indexing into Apache Druid #1

Closed
m wants to merge 263 commits from druid into master
6 changed files with 190 additions and 133 deletions
Showing only changes of commit 4ea77ac543 - Show all commits

179
db.py
View File

@ -1,15 +1,15 @@
import random
from math import ceil
import aioredis
import manticoresearch
import ujson
from aiokafka import AIOKafkaProducer
from manticoresearch.rest import ApiException
from numpy import array_split
from redis import StrictRedis
import util
import random
from aiokafka import AIOKafkaProducer
# Manticore schema
from schemas import mc_s
@ -21,6 +21,7 @@ api_instance = manticoresearch.IndexApi(api_client)
# Kafka
from aiokafka import AIOKafkaProducer
KAFKA_TOPIC = "msg"
log = util.get_logger("db")
@ -51,7 +52,7 @@ KEYPREFIX = "queue."
async def store_kafka_batch(data):
print("STORING KAFKA BATCH")
producer = AIOKafkaProducer(bootstrap_servers='kafka:9092')
producer = AIOKafkaProducer(bootstrap_servers="kafka:9092")
await producer.start()
batch = producer.create_batch()
for msg in data:
@ -70,67 +71,74 @@ async def store_kafka_batch(data):
del msg[key]
if key in schema:
if isinstance(value, int):
if schema[key].startswith("string") or schema[key].startswith("text"):
if schema[key].startswith("string") or schema[key].startswith(
"text"
):
msg[key] = str(value)
message = ujson.dumps(msg)
body = str.encode(message)
if "ts" not in msg:
# print("MSG WITHOUT TS", msg)
continue
metadata = batch.append(key=None, value=body, timestamp=msg["ts"])
if metadata is None:
partitions = await producer.partitions_for(KAFKA_TOPIC)
partition = random.choice(tuple(partitions))
await producer.send_batch(batch, KAFKA_TOPIC, partition=partition)
print("%d messages sent to partition %d"
% (batch.record_count(), partition))
print(
"%d messages sent to partition %d" % (batch.record_count(), partition)
)
batch = producer.create_batch()
continue
partitions = await producer.partitions_for(KAFKA_TOPIC)
partition = random.choice(tuple(partitions))
await producer.send_batch(batch, KAFKA_TOPIC, partition=partition)
print("%d messages sent to partition %d"
% (batch.record_count(), partition))
print("%d messages sent to partition %d" % (batch.record_count(), partition))
await producer.stop()
# def store_message(msg):
# """
# Store a message into Manticore
# :param msg: dict
# """
# store_kafka(msg)
# # Duplicated to avoid extra function call
# if msg["type"] in TYPES_MAIN:
# index = "main"
# schema = mc_s.schema_main
# elif msg["type"] in TYPES_META:
# index = "meta"
# schema = mc_s.schema_meta
# elif msg["type"] in TYPES_INT:
# index = "internal"
# schema = mc_s.schema_int
# # normalise fields
# for key, value in list(msg.items()):
# if value is None:
# del msg[key]
# if key in schema:
# if isinstance(value, int):
# if schema[key].startswith("string") or schema[key].startswith("text"):
# msg[key] = str(value)
# # Duplicated to avoid extra function call
# if msg["type"] in TYPES_MAIN:
# index = "main"
# schema = mc_s.schema_main
# elif msg["type"] in TYPES_META:
# index = "meta"
# schema = mc_s.schema_meta
# elif msg["type"] in TYPES_INT:
# index = "internal"
# schema = mc_s.schema_int
# # normalise fields
# for key, value in list(msg.items()):
# if value is None:
# del msg[key]
# if key in schema:
# if isinstance(value, int):
# if schema[key].startswith("string") or schema[key].startswith("text"):
# msg[key] = str(value)
# body = [{"insert": {"index": index, "doc": msg}}]
# body_post = ""
# for item in body:
# body_post += ujson.dumps(item)
# body_post += "\n"
# body = [{"insert": {"index": index, "doc": msg}}]
# body_post = ""
# for item in body:
# body_post += ujson.dumps(item)
# body_post += "\n"
# # print(body_post)
# try:
# # Bulk index operations
# print("FAKE POST")
# #api_response = api_instance.bulk(body_post) # , async_req=True
# # print(api_response)
# except ApiException as e:
# print("Exception when calling IndexApi->bulk: %s\n" % e)
# print("ATTEMPT", body_post)
# # print(body_post)
# try:
# # Bulk index operations
# print("FAKE POST")
# #api_response = api_instance.bulk(body_post) # , async_req=True
# # print(api_response)
# except ApiException as e:
# print("Exception when calling IndexApi->bulk: %s\n" % e)
# print("ATTEMPT", body_post)
async def queue_message(msg):
"""
@ -139,9 +147,10 @@ async def queue_message(msg):
src = msg["src"]
message = ujson.dumps(msg)
key = "{KEYPREFIX}{src}"
key = f"{KEYPREFIX}{src}"
await ar.sadd(key, message)
async def queue_message_bulk(data):
"""
Queue multiple messages on the Redis buffer.
@ -150,7 +159,7 @@ async def queue_message_bulk(data):
src = msg["src"]
message = ujson.dumps(msg)
key = "{KEYPREFIX}{src}"
key = f"{KEYPREFIX}{src}"
await ar.sadd(key, message)
@ -176,50 +185,50 @@ def queue_message_bulk_sync(data):
# return
# for msg in data:
# store_kafka(msg)
# # 10000: maximum inserts we can submit to
# # Manticore as of Sept 2022
# split_posts = array_split(data, ceil(len(data) / 10000))
# for messages in split_posts:
# total = []
# for msg in messages:
# # Duplicated to avoid extra function call (see above)
# if msg["type"] in TYPES_MAIN:
# index = "main"
# schema = mc_s.schema_main
# elif msg["type"] in TYPES_META:
# index = "meta"
# schema = mc_s.schema_meta
# elif msg["type"] in TYPES_INT:
# index = "internal"
# schema = mc_s.schema_int
# # normalise fields
# for key, value in list(msg.items()):
# if value is None:
# del msg[key]
# if key in schema:
# if isinstance(value, int):
# if schema[key].startswith("string") or schema[key].startswith(
# "text"
# ):
# msg[key] = str(value)
# # 10000: maximum inserts we can submit to
# # Manticore as of Sept 2022
# split_posts = array_split(data, ceil(len(data) / 10000))
# for messages in split_posts:
# total = []
# for msg in messages:
# # Duplicated to avoid extra function call (see above)
# if msg["type"] in TYPES_MAIN:
# index = "main"
# schema = mc_s.schema_main
# elif msg["type"] in TYPES_META:
# index = "meta"
# schema = mc_s.schema_meta
# elif msg["type"] in TYPES_INT:
# index = "internal"
# schema = mc_s.schema_int
# # normalise fields
# for key, value in list(msg.items()):
# if value is None:
# del msg[key]
# if key in schema:
# if isinstance(value, int):
# if schema[key].startswith("string") or schema[key].startswith(
# "text"
# ):
# msg[key] = str(value)
# body = {"insert": {"index": index, "doc": msg}}
# total.append(body)
# body = {"insert": {"index": index, "doc": msg}}
# total.append(body)
# body_post = ""
# for item in total:
# body_post += ujson.dumps(item)
# body_post += "\n"
# body_post = ""
# for item in total:
# body_post += ujson.dumps(item)
# body_post += "\n"
# # print(body_post)
# try:
# # Bulk index operations
# print("FAKE POST")
# #api_response = api_instance.bulk(body_post) # , async_req=True
# #print(api_response)
# except ApiException as e:
# print("Exception when calling IndexApi->bulk: %s\n" % e)
# print("ATTEMPT", body_post)
# # print(body_post)
# try:
# # Bulk index operations
# print("FAKE POST")
# #api_response = api_instance.bulk(body_post) # , async_req=True
# #print(api_response)
# except ApiException as e:
# print("Exception when calling IndexApi->bulk: %s\n" % e)
# print("ATTEMPT", body_post)
# def update_schema():
@ -243,5 +252,5 @@ def queue_message_bulk_sync(data):
# util_instance.sql(create_query)
#create_index(api_client)
#update_schema()
# create_index(api_client)
# update_schema()

View File

@ -19,7 +19,11 @@ services:
- .env
volumes_from:
- tmp
# depends_on:
depends_on:
- broker
- kafka
- tmp
- redis
# - db
threshold:
@ -52,12 +56,16 @@ services:
- 9093:9090
environment:
- DRUID_BROKER_URL=http://broker:8082
depends_on:
- broker
metabase:
container_name: metabase
image: metabase/metabase:latest
ports:
- 3001:3000
depends_on:
- broker
postgres:
container_name: postgres
@ -82,6 +90,7 @@ services:
image: bitnami/kafka
depends_on:
- zookeeper
- broker
ports:
- 29092:29092
- 9092:9092

View File

@ -1,11 +1,11 @@
import asyncio
from os import getenv
import db
import util
from sources.ch4 import Chan4
from sources.dis import DiscordClient
from sources.ingest import Ingest
import db
# For development
# if not getenv("DISCORD_TOKEN", None):
@ -27,7 +27,6 @@ async def main(loop):
log.info("Starting Discord handler.")
client = DiscordClient()
loop.create_task(client.start(token))
# client.run(token)
log.info("Starting 4chan handler.")
chan = Chan4()

View File

@ -1,7 +1,20 @@
from concurrent.futures import ProcessPoolExecutor
import asyncio
import os
import random
# For key generation
import string
from concurrent.futures import ProcessPoolExecutor
# For timestamp processing
from datetime import datetime
from math import ceil
import ujson
# For 4chan message parsing
from bs4 import BeautifulSoup
from numpy import array_split
from siphashc import siphash
import db
@ -10,19 +23,6 @@ import util
# 4chan schema
from schemas.ch4_s import ATTRMAP
# For key generation
import string
import random
# For timestamp processing
import datetime
# For 4chan message parsing
from bs4 import BeautifulSoup
from numpy import array_split
from math import ceil
log = util.get_logger("process")
# Maximum number of CPU threads to use for post processing
@ -30,6 +30,7 @@ CPU_THREADS = os.cpu_count()
p = ProcessPoolExecutor(CPU_THREADS)
def get_hash_key():
hash_key = db.r.get("hashing_key")
if not hash_key:
@ -42,33 +43,68 @@ def get_hash_key():
log.debug(f"Decoded hash key: {hash_key}")
return hash_key
hash_key = get_hash_key()
@asyncio.coroutine
async def spawn_processing_threads(data):
print("SPAWN", data)
loop = asyncio.get_event_loop()
tasks = []
oldts = [x["now"] for x in data if "now" in x]
if len(data) < CPU_THREADS:
split_data = [data]
else:
msg_per_core = int(len(data) / CPU_THREADS)
print("MSG PER CORE", msg_per_core)
split_data = array_split(data, ceil(len(data) / msg_per_core))
print("SPLIT DATA", split_data)
for split in split_data:
for index, split in enumerate(split_data):
print("DELEGATING TO THREAD", len(split))
await process_data_thread(split)
future = loop.run_in_executor(p, process_data, data)
# future = p.submit(process_data, split)
tasks.append(future)
# results = [x.result(timeout=50) for x in tasks]
results = await asyncio.gather(*tasks)
print("RESULTS", len(results))
# Join the results back from the split list
flat_list = [item for sublist in results for item in sublist]
print("LENFLAT", len(flat_list))
print("LENDATA", len(data))
newts = [x["ts"] for x in flat_list if "ts" in x]
print("lenoldts", len(oldts))
print("lennewts", len(newts))
allts = all(["ts" in x for x in flat_list])
print("ALLTS", allts)
alllen = [len(x) for x in flat_list]
print("ALLLEN", alllen)
await db.store_kafka_batch(flat_list)
# @asyncio.coroutine
# def process_data_thread(data):
# """
# Helper to spawn threads to process a list of data.
# """
# loop = asyncio.get_event_loop()
# if len(data) < CPU_THREADS:
# split_data = [data]
# else:
# msg_per_core = int(len(data) / CPU_THREADS)
# print("MSG PER CORE", msg_per_core)
# split_data = array_split(data, ceil(len(data) / msg_per_core))
# for index, split in enumerate(split_data):
# print("DELEGATING TO THREAD", len(split))
# #f = process_data_thread(split)
# yield loop.run_in_executor(p, process_data, data)
@asyncio.coroutine
def process_data_thread(data):
"""
Helper to spawn threads to process a list of data.
"""
loop = asyncio.get_event_loop()
yield from loop.run_in_executor(p, process_data, data)
def process_data(data):
print("PROCESSING DATA", data)
print("PROCESS DATA START")
# to_store = []
for index, msg in enumerate(data):
#print("PROCESSING", msg)
# print("PROCESSING", msg)
if msg["src"] == "4ch":
board = msg["net"]
thread = msg["channel"]
@ -81,15 +117,18 @@ def process_data(data):
if key_content:
key_content = key_content.decode("ascii")
if key_content == hash:
del data[index]
continue
else:
data[index][index]["type"] = "update"
data[index]["type"] = "update"
db.r.set(redis_key, hash)
for key2, value in list(msg.items()):
if "now" not in data[index]:
print("NOW NOT IN INDEX", data[index])
for key2, value in list(data[index].items()):
if key2 in ATTRMAP:
msg[ATTRMAP[key2]] = data[index][key2]
data[index][ATTRMAP[key2]] = data[index][key2]
del data[index][key2]
if "ts" in msg:
if "ts" in data[index]:
old_time = data[index]["ts"]
# '08/30/22(Tue)02:25:37'
time_spl = old_time.split(":")
@ -100,7 +139,13 @@ def process_data(data):
# new_ts = old_ts.isoformat()
new_ts = int(old_ts.timestamp())
data[index]["ts"] = new_ts
else:
print("MSG WITHOUT TS PROCESS", data[index])
continue
if "msg" in msg:
soup = BeautifulSoup(data[index]["msg"], "html.parser")
msg = soup.get_text(separator="\n")
data[index]["msg"] = msg
data[index]["msg"] = msg
# to_store.append(data[index])
print("FINISHED PROCESSING DATA")
return data

View File

@ -136,7 +136,7 @@ class Chan4(object):
# Split into 10,000 chunks
if not all_posts:
return
self.handle_posts(all_posts)
await self.handle_posts(all_posts)
# threads_per_core = int(len(all_posts) / CPU_THREADS)
# for i in range(CPU_THREADS):
# new_dict = {}
@ -146,8 +146,7 @@ class Chan4(object):
# new_dict[k].append(v)
# else:
# new_dict[k] = [v]
#await self.handle_posts_thread(new_dict)
# await self.handle_posts_thread(new_dict)
# print("VAL", ceil(len(all_posts) / threads_per_core))
# split_posts = array_split(all_posts, ceil(len(all_posts) / threads_per_core))

View File

@ -4,24 +4,22 @@ import ujson
import db
import util
from processing import process
SOURCES = ["irc", "dis", "4ch"]
SOURCES = ["4ch", "irc", "dis"]
KEYPREFIX = "queue."
CHUNK_SIZE = 1000
CHUNK_SIZE = 90000
ITER_DELAY = 0.5
class Ingest(object):
def __init__(self):
name = self.__class__.__name__
self.log = util.get_logger(name)
async def run(self):
# items = [{'no': 23567753, 'now': '09/12/22(Mon)20:10:29', 'name': 'Anonysmous', 'filename': '1644986767568', 'ext': '.webm', 'w': 1280, 'h': 720, 'tn_w': 125, 'tn_h': 70, 'tim': 1663027829301457, 'time': 1663027829, 'md5': 'zeElr1VR05XpZ2XuAPhmPA==', 'fsize': 3843621, 'resto': 23554700, 'type': 'msg', 'src': '4ch', 'net': 'gif', 'channel': '23554700'}]
# await process.spawn_processing_threads(items)
while True:
await self.get_chunk()
await asyncio.sleep(ITER_DELAY)
@ -33,13 +31,11 @@ class Ingest(object):
chunk = await db.ar.spop(key, CHUNK_SIZE)
if not chunk:
continue
#self.log.info(f"Got chunk: {chunk}")
# self.log.info(f"Got chunk: {chunk}")
for item in chunk:
item = ujson.loads(item)
#self.log.info(f"Got item: {item}")
# self.log.info(f"Got item: {item}")
items.append(item)
if items:
print("PROCESSING", len(items))
await process.spawn_processing_threads(items)
print("DONE WITH PROCESSING", len(items))
await db.store_kafka_batch(items)