Implement indexing into Apache Druid #1

Closed
m wants to merge 263 commits from druid into master
7 changed files with 366 additions and 157 deletions
Showing only changes of commit fec0d379a6 - Show all commits

253
db.py
View File

@ -8,12 +8,21 @@ from numpy import array_split
from redis import StrictRedis
import util
import random
from aiokafka import AIOKafkaProducer
# Manticore schema
from schemas import mc_s
# Manticore
configuration = manticoresearch.Configuration(host="http://monolith-db-1:9308")
api_client = manticoresearch.ApiClient(configuration)
api_instance = manticoresearch.IndexApi(api_client)
# Kafka
from aiokafka import AIOKafkaProducer
KAFKA_TOPIC = "msg"
log = util.get_logger("db")
# Redis (legacy)
@ -37,14 +46,15 @@ TYPES_MAIN = [
]
TYPES_META = ["who"]
TYPES_INT = ["conn", "highlight", "znc", "query", "self"]
KEYPREFIX = "queue."
def store_message(msg):
"""
Store a message into Manticore
:param msg: dict
"""
# Duplicated to avoid extra function call
async def store_kafka_batch(data):
print("STORING KAFKA BATCH")
producer = AIOKafkaProducer(bootstrap_servers='kafka:9092')
await producer.start()
batch = producer.create_batch()
for msg in data:
if msg["type"] in TYPES_MAIN:
index = "main"
schema = mc_s.schema_main
@ -62,96 +72,175 @@ def store_message(msg):
if isinstance(value, int):
if schema[key].startswith("string") or schema[key].startswith("text"):
msg[key] = str(value)
message = ujson.dumps(msg)
body = str.encode(message)
metadata = batch.append(key=None, value=body, timestamp=msg["ts"])
if metadata is None:
partitions = await producer.partitions_for(KAFKA_TOPIC)
partition = random.choice(tuple(partitions))
await producer.send_batch(batch, KAFKA_TOPIC, partition=partition)
print("%d messages sent to partition %d"
% (batch.record_count(), partition))
batch = producer.create_batch()
continue
body = [{"insert": {"index": index, "doc": msg}}]
body_post = ""
for item in body:
body_post += ujson.dumps(item)
body_post += "\n"
partitions = await producer.partitions_for(KAFKA_TOPIC)
partition = random.choice(tuple(partitions))
await producer.send_batch(batch, KAFKA_TOPIC, partition=partition)
print("%d messages sent to partition %d"
% (batch.record_count(), partition))
await producer.stop()
# print(body_post)
try:
# Bulk index operations
print("FAKE POST")
#api_response = api_instance.bulk(body_post) # , async_req=True
# print(api_response)
except ApiException as e:
print("Exception when calling IndexApi->bulk: %s\n" % e)
print("ATTEMPT", body_post)
# def store_message(msg):
# """
# Store a message into Manticore
# :param msg: dict
# """
# store_kafka(msg)
# # Duplicated to avoid extra function call
# if msg["type"] in TYPES_MAIN:
# index = "main"
# schema = mc_s.schema_main
# elif msg["type"] in TYPES_META:
# index = "meta"
# schema = mc_s.schema_meta
# elif msg["type"] in TYPES_INT:
# index = "internal"
# schema = mc_s.schema_int
# # normalise fields
# for key, value in list(msg.items()):
# if value is None:
# del msg[key]
# if key in schema:
# if isinstance(value, int):
# if schema[key].startswith("string") or schema[key].startswith("text"):
# msg[key] = str(value)
# body = [{"insert": {"index": index, "doc": msg}}]
# body_post = ""
# for item in body:
# body_post += ujson.dumps(item)
# body_post += "\n"
def store_message_bulk(data):
# # print(body_post)
# try:
# # Bulk index operations
# print("FAKE POST")
# #api_response = api_instance.bulk(body_post) # , async_req=True
# # print(api_response)
# except ApiException as e:
# print("Exception when calling IndexApi->bulk: %s\n" % e)
# print("ATTEMPT", body_post)
async def queue_message(msg):
"""
Store a message into Manticore
:param msg: dict
Queue a message on the Redis buffer.
"""
if not data:
return
# 10000: maximum inserts we can submit to
# Manticore as of Sept 2022
split_posts = array_split(data, ceil(len(data) / 10000))
for messages in split_posts:
total = []
for msg in messages:
# Duplicated to avoid extra function call (see above)
if msg["type"] in TYPES_MAIN:
index = "main"
schema = mc_s.schema_main
elif msg["type"] in TYPES_META:
index = "meta"
schema = mc_s.schema_meta
elif msg["type"] in TYPES_INT:
index = "internal"
schema = mc_s.schema_int
# normalise fields
for key, value in list(msg.items()):
if value is None:
del msg[key]
if key in schema:
if isinstance(value, int):
if schema[key].startswith("string") or schema[key].startswith(
"text"
):
msg[key] = str(value)
src = msg["src"]
message = ujson.dumps(msg)
body = {"insert": {"index": index, "doc": msg}}
total.append(body)
key = "{KEYPREFIX}{src}"
await ar.sadd(key, message)
body_post = ""
for item in total:
body_post += ujson.dumps(item)
body_post += "\n"
async def queue_message_bulk(data):
"""
Queue multiple messages on the Redis buffer.
"""
for msg in data:
src = msg["src"]
message = ujson.dumps(msg)
# print(body_post)
try:
# Bulk index operations
print("FAKE POST")
#api_response = api_instance.bulk(body_post) # , async_req=True
#print(api_response)
except ApiException as e:
print("Exception when calling IndexApi->bulk: %s\n" % e)
print("ATTEMPT", body_post)
key = "{KEYPREFIX}{src}"
await ar.sadd(key, message)
def update_schema():
pass
# For now, make a normal function until we go full async
def queue_message_bulk_sync(data):
"""
Queue multiple messages on the Redis buffer.
"""
for msg in data:
src = msg["src"]
message = ujson.dumps(msg)
key = "{KEYPREFIX}{src}"
r.sadd(key, message)
def create_index(api_client):
util_instance = manticoresearch.UtilsApi(api_client)
schemas = {
"main": mc_s.schema_main,
"meta": mc_s.schema_meta,
"internal": mc_s.schema_int,
}
for name, schema in schemas.items():
schema_types = ", ".join([f"{k} {v}" for k, v in schema.items()])
# def store_message_bulk(data):
# """
# Store a message into Manticore
# :param msg: dict
# """
# if not data:
# return
# for msg in data:
# store_kafka(msg)
# # 10000: maximum inserts we can submit to
# # Manticore as of Sept 2022
# split_posts = array_split(data, ceil(len(data) / 10000))
# for messages in split_posts:
# total = []
# for msg in messages:
# # Duplicated to avoid extra function call (see above)
# if msg["type"] in TYPES_MAIN:
# index = "main"
# schema = mc_s.schema_main
# elif msg["type"] in TYPES_META:
# index = "meta"
# schema = mc_s.schema_meta
# elif msg["type"] in TYPES_INT:
# index = "internal"
# schema = mc_s.schema_int
# # normalise fields
# for key, value in list(msg.items()):
# if value is None:
# del msg[key]
# if key in schema:
# if isinstance(value, int):
# if schema[key].startswith("string") or schema[key].startswith(
# "text"
# ):
# msg[key] = str(value)
create_query = (
f"create table if not exists {name}({schema_types}) engine='columnar'"
)
print("Schema types", create_query)
util_instance.sql(create_query)
# body = {"insert": {"index": index, "doc": msg}}
# total.append(body)
# body_post = ""
# for item in total:
# body_post += ujson.dumps(item)
# body_post += "\n"
# # print(body_post)
# try:
# # Bulk index operations
# print("FAKE POST")
# #api_response = api_instance.bulk(body_post) # , async_req=True
# #print(api_response)
# except ApiException as e:
# print("Exception when calling IndexApi->bulk: %s\n" % e)
# print("ATTEMPT", body_post)
# def update_schema():
# pass
# def create_index(api_client):
# util_instance = manticoresearch.UtilsApi(api_client)
# schemas = {
# "main": mc_s.schema_main,
# "meta": mc_s.schema_meta,
# "internal": mc_s.schema_int,
# }
# for name, schema in schemas.items():
# schema_types = ", ".join([f"{k} {v}" for k, v in schema.items()])
# create_query = (
# f"create table if not exists {name}({schema_types}) engine='columnar'"
# )
# print("Schema types", create_query)
# util_instance.sql(create_query)
#create_index(api_client)

View File

@ -5,6 +5,7 @@ import util
from sources.ch4 import Chan4
from sources.dis import DiscordClient
from sources.ingest import Ingest
import db
# For development
# if not getenv("DISCORD_TOKEN", None):

0
processing/__init__.py Normal file
View File

106
processing/process.py Normal file
View File

@ -0,0 +1,106 @@
from concurrent.futures import ProcessPoolExecutor
import asyncio
import os
import ujson
from siphashc import siphash
import db
import util
# 4chan schema
from schemas.ch4_s import ATTRMAP
# For key generation
import string
import random
# For timestamp processing
import datetime
# For 4chan message parsing
from bs4 import BeautifulSoup
from numpy import array_split
from math import ceil
log = util.get_logger("process")
# Maximum number of CPU threads to use for post processing
CPU_THREADS = os.cpu_count()
p = ProcessPoolExecutor(CPU_THREADS)
def get_hash_key():
hash_key = db.r.get("hashing_key")
if not hash_key:
letters = string.ascii_lowercase
hash_key = "".join(random.choice(letters) for i in range(16))
log.debug(f"Created new hash key: {hash_key}")
db.r.set("hashing_key", hash_key)
else:
hash_key = hash_key.decode("ascii")
log.debug(f"Decoded hash key: {hash_key}")
return hash_key
hash_key = get_hash_key()
async def spawn_processing_threads(data):
print("SPAWN", data)
if len(data) < CPU_THREADS:
split_data = [data]
else:
msg_per_core = int(len(data) / CPU_THREADS)
print("MSG PER CORE", msg_per_core)
split_data = array_split(data, ceil(len(data) / msg_per_core))
print("SPLIT DATA", split_data)
for split in split_data:
print("DELEGATING TO THREAD", len(split))
await process_data_thread(split)
@asyncio.coroutine
def process_data_thread(data):
"""
Helper to spawn threads to process a list of data.
"""
loop = asyncio.get_event_loop()
yield from loop.run_in_executor(p, process_data, data)
def process_data(data):
print("PROCESSING DATA", data)
for index, msg in enumerate(data):
#print("PROCESSING", msg)
if msg["src"] == "4ch":
board = msg["net"]
thread = msg["channel"]
# Calculate hash for post
post_normalised = ujson.dumps(msg, sort_keys=True)
hash = siphash(hash_key, post_normalised)
hash = str(hash)
redis_key = f"cache.{board}.{thread}.{msg['no']}"
key_content = db.r.get(redis_key)
if key_content:
key_content = key_content.decode("ascii")
if key_content == hash:
continue
else:
data[index][index]["type"] = "update"
db.r.set(redis_key, hash)
for key2, value in list(msg.items()):
if key2 in ATTRMAP:
msg[ATTRMAP[key2]] = data[index][key2]
del data[index][key2]
if "ts" in msg:
old_time = data[index]["ts"]
# '08/30/22(Tue)02:25:37'
time_spl = old_time.split(":")
if len(time_spl) == 3:
old_ts = datetime.strptime(old_time, "%m/%d/%y(%a)%H:%M:%S")
else:
old_ts = datetime.strptime(old_time, "%m/%d/%y(%a)%H:%M")
# new_ts = old_ts.isoformat()
new_ts = int(old_ts.timestamp())
data[index]["ts"] = new_ts
if "msg" in msg:
soup = BeautifulSoup(data[index]["msg"], "html.parser")
msg = soup.get_text(separator="\n")
data[index]["msg"] = msg

View File

@ -19,19 +19,19 @@ from schemas.ch4_s import ATTRMAP
# CONFIGURATION #
# Number of 4chan threads to request at once
THREADS_CONCURRENT = 100
THREADS_CONCURRENT = 1000
# Seconds to wait between every THREADS_CONCURRENT requests
THREADS_DELAY = 0.8
THREADS_DELAY = 0.1
# Seconds to wait between crawls
CRAWL_DELAY = 5
# Semaphore value ?
THREADS_SEMAPHORE = 100
THREADS_SEMAPHORE = 1000
# Maximum number of CPU threads to use for post processing
CPU_THREADS = 1
CPU_THREADS = 8
# CONFIGURATION END #
@ -95,7 +95,7 @@ class Chan4(object):
no = threads["no"]
to_get.append((mapped, no))
self.log.info(f"Got thread list for {mapped}: {len(response)}")
self.log.debug(f"Got thread list for {mapped}: {len(response)}")
if not to_get:
return
split_threads = array_split(to_get, ceil(len(to_get) / THREADS_CONCURRENT))
@ -136,16 +136,19 @@ class Chan4(object):
# Split into 10,000 chunks
if not all_posts:
return
threads_per_core = int(len(all_posts) / CPU_THREADS)
for i in range(CPU_THREADS):
new_dict = {}
pulled_posts = self.take_items(all_posts, threads_per_core)
for k, v in pulled_posts:
if k in new_dict:
new_dict[k].append(v)
else:
new_dict[k] = [v]
await self.handle_posts_thread(new_dict)
self.handle_posts(all_posts)
# threads_per_core = int(len(all_posts) / CPU_THREADS)
# for i in range(CPU_THREADS):
# new_dict = {}
# pulled_posts = self.take_items(all_posts, threads_per_core)
# for k, v in pulled_posts:
# if k in new_dict:
# new_dict[k].append(v)
# else:
# new_dict[k] = [v]
#await self.handle_posts_thread(new_dict)
# print("VAL", ceil(len(all_posts) / threads_per_core))
# split_posts = array_split(all_posts, ceil(len(all_posts) / threads_per_core))
# print("THREADS PER CORE SPLIT", len(split_posts))
@ -161,46 +164,46 @@ class Chan4(object):
loop = asyncio.get_event_loop()
yield from loop.run_in_executor(p, self.handle_posts, posts)
def handle_posts(self, posts):
async def handle_posts(self, posts):
to_store = []
for key, post_list in posts.items():
board, thread = key
for index, post in enumerate(post_list):
posts[key][index]["type"] = "msg"
# Calculate hash for post
post_normalised = ujson.dumps(post, sort_keys=True)
hash = siphash(self.hash_key, post_normalised)
hash = str(hash)
redis_key = f"cache.{board}.{thread}.{post['no']}"
key_content = db.r.get(redis_key)
if key_content:
key_content = key_content.decode("ascii")
if key_content == hash:
continue
else:
posts[key][index]["type"] = "update"
db.r.set(redis_key, hash)
# # Calculate hash for post
# post_normalised = ujson.dumps(post, sort_keys=True)
# hash = siphash(self.hash_key, post_normalised)
# hash = str(hash)
# redis_key = f"cache.{board}.{thread}.{post['no']}"
# key_content = db.r.get(redis_key)
# if key_content:
# key_content = key_content.decode("ascii")
# if key_content == hash:
# continue
# else:
# posts[key][index]["type"] = "update"
# #db.r.set(redis_key, hash)
for key2, value in list(post.items()):
if key2 in ATTRMAP:
post[ATTRMAP[key2]] = posts[key][index][key2]
del posts[key][index][key2]
if "ts" in post:
old_time = posts[key][index]["ts"]
# '08/30/22(Tue)02:25:37'
time_spl = old_time.split(":")
if len(time_spl) == 3:
old_ts = datetime.strptime(old_time, "%m/%d/%y(%a)%H:%M:%S")
else:
old_ts = datetime.strptime(old_time, "%m/%d/%y(%a)%H:%M")
# new_ts = old_ts.isoformat()
new_ts = int(old_ts.timestamp())
posts[key][index]["ts"] = new_ts
if "msg" in post:
soup = BeautifulSoup(posts[key][index]["msg"], "html.parser")
msg = soup.get_text(separator="\n")
posts[key][index]["msg"] = msg
# for key2, value in list(post.items()):
# if key2 in ATTRMAP:
# post[ATTRMAP[key2]] = posts[key][index][key2]
# del posts[key][index][key2]
# if "ts" in post:
# old_time = posts[key][index]["ts"]
# # '08/30/22(Tue)02:25:37'
# time_spl = old_time.split(":")
# if len(time_spl) == 3:
# old_ts = datetime.strptime(old_time, "%m/%d/%y(%a)%H:%M:%S")
# else:
# old_ts = datetime.strptime(old_time, "%m/%d/%y(%a)%H:%M")
# # new_ts = old_ts.isoformat()
# new_ts = int(old_ts.timestamp())
# posts[key][index]["ts"] = new_ts
# if "msg" in post:
# soup = BeautifulSoup(posts[key][index]["msg"], "html.parser")
# msg = soup.get_text(separator="\n")
# posts[key][index]["msg"] = msg
posts[key][index]["src"] = "4ch"
posts[key][index]["net"] = board
@ -211,7 +214,8 @@ class Chan4(object):
# print({name_map[name]: val for name, val in post.items()})
# print(f"Got posts: {len(posts)}")
if to_store:
db.store_message_bulk(to_store)
print("STORING", len(to_store))
await db.queue_message_bulk(to_store)
async def fetch(self, url, session, mapped):
async with session.get(url) as response:

View File

@ -41,4 +41,4 @@ class DiscordClient(discord.Client):
a["type"] = "msg"
a["src"] = "dis"
db.store_message(a)
await db.queue_message(a)

View File

@ -5,12 +5,17 @@ import ujson
import db
import util
SOURCES = ["irc"]
from processing import process
SOURCES = ["irc", "dis", "4ch"]
KEYPREFIX = "queue."
CHUNK_SIZE = 1000
ITER_DELAY = 0.5
class Ingest(object):
def __init__(self):
name = self.__class__.__name__
@ -18,19 +23,23 @@ class Ingest(object):
async def run(self):
while True:
await self.process_chunk()
await self.get_chunk()
await asyncio.sleep(ITER_DELAY)
async def process_chunk(self):
async def get_chunk(self):
items = []
for source in SOURCES:
key = f"{KEYPREFIX}{source}"
chunk = await db.ar.spop(key, CHUNK_SIZE)
if not chunk:
continue
self.log.info(f"Got chunk: {chunk}")
#self.log.info(f"Got chunk: {chunk}")
for item in chunk:
item = ujson.loads(item)
self.log.info(f"Got item: {item}")
#self.log.info(f"Got item: {item}")
items.append(item)
db.store_message_bulk(items)
if items:
print("PROCESSING", len(items))
await process.spawn_processing_threads(items)
print("DONE WITH PROCESSING", len(items))
await db.store_kafka_batch(items)