monolith/processing/process.py

306 lines
9.1 KiB
Python

import asyncio
import os
import random
# For key generation
import string
# For timing
import time
# Squash errors
import warnings
from concurrent.futures import ProcessPoolExecutor
# For timestamp processing
from datetime import datetime
from os import getenv
import orjson
import regex
# For 4chan message parsing
from bs4 import BeautifulSoup
# Tokenisation
# import spacy
from gensim.parsing.preprocessing import ( # stem_text,
preprocess_string,
remove_stopwords,
strip_multiple_whitespaces,
strip_non_alphanum,
strip_numeric,
strip_punctuation,
strip_short,
strip_tags,
)
from polyglot.detect.base import logger as polyglot_logger
# For NLP
from polyglot.text import Text
from pycld2 import error as cld2_error
from siphashc import siphash
# For sentiment
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
import db
import util
# 4chan schema
from schemas.ch4_s import ATTRMAP
trues = ("true", "1", "t", True)
KEYNAME = "queue"
MONOLITH_PROCESS_PERFSTATS = (
getenv("MONOLITH_PROCESS_PERFSTATS", "false").lower() in trues
)
CUSTOM_FILTERS = [
lambda x: x.lower(),
strip_tags, #
strip_punctuation, #
strip_multiple_whitespaces,
strip_numeric,
remove_stopwords,
strip_short,
# stem_text,
strip_non_alphanum, #
]
RE_BAD_CHARS = regex.compile(r"[\p{Cc}\p{Cs}]+")
# Squash errors
polyglot_logger.setLevel("ERROR")
warnings.filterwarnings("ignore", category=UserWarning, module="bs4")
# TAGS = ["NOUN", "ADJ", "VERB", "ADV"]
# nlp = spacy.load("en_core_web_sm", disable=["parser", "ner"])
log = util.get_logger("process")
# Maximum number of CPU threads to use for post processing
CPU_THREADS = int(os.getenv("MONOLITH_PROCESS_THREADS", os.cpu_count()))
p = ProcessPoolExecutor(CPU_THREADS)
def get_hash_key():
hash_key = db.r.get("hashing_key")
if not hash_key:
letters = string.ascii_lowercase
hash_key = "".join(random.choice(letters) for i in range(16))
log.debug(f"Created new hash key: {hash_key}")
db.r.set("hashing_key", hash_key)
else:
hash_key = hash_key.decode("ascii")
log.debug(f"Decoded hash key: {hash_key}")
return hash_key
hash_key = get_hash_key()
@asyncio.coroutine
async def spawn_processing_threads(chunk, length):
log.debug(f"Spawning processing threads for chunk {chunk} of length {length}")
loop = asyncio.get_event_loop()
tasks = []
if length < CPU_THREADS * 100:
cores = 1
chunk_size = length
else:
cores = CPU_THREADS
chunk_size = int(length / cores)
for index in range(cores):
log.debug(
f"[{chunk}/{index}] Delegating {chunk_size} messages to thread {index}"
)
task = loop.run_in_executor(p, process_data, chunk, index, chunk_size)
tasks.append(task)
results = [await task for task in tasks]
# Join the results back from the split list
flat_list = [item for sublist in results for item in sublist]
log.debug(
(
f"[{chunk}/{index}] Results from processing of {length} messages in "
f"{cores} threads: {len(flat_list)}"
)
)
await db.store_batch(flat_list)
# log.debug(f"Finished processing {len_data} messages")
def process_data(chunk, index, chunk_size):
log.debug(f"[{chunk}/{index}] Processing {chunk_size} messages")
to_store = []
sentiment_time = 0.0
regex_time = 0.0
polyglot_time = 0.0
date_time = 0.0
nlp_time = 0.0
normalise_time = 0.0
hash_time = 0.0
normal2_time = 0.0
soup_time = 0.0
total_time = 0.0
# Initialise sentiment analyser
analyzer = SentimentIntensityAnalyzer()
for msg_index in range(chunk_size):
msg = db.r.rpop(KEYNAME)
if not msg:
return
msg = orjson.loads(msg)
total_start = time.process_time()
# normalise fields
start = time.process_time()
for key, value in list(msg.items()):
if value is None:
del msg[key]
time_took = (time.process_time() - start) * 1000
normalise_time += time_took
# Remove invalid UTF-8 characters
# IRC and Discord
start = time.process_time()
if "msg" in msg:
msg["msg"] = RE_BAD_CHARS.sub("", msg["msg"])
# 4chan - since we change the attributes below
if "com" in msg:
msg["com"] = RE_BAD_CHARS.sub("", msg["com"])
time_took = (time.process_time() - start) * 1000
regex_time += time_took
if msg["src"] == "4ch":
board = msg["net"]
thread = msg["channel"]
# Calculate hash for post
start = time.process_time()
post_normalised = orjson.dumps(msg, option=orjson.OPT_SORT_KEYS)
hash = siphash(hash_key, post_normalised)
hash = str(hash)
redis_key = (
f"cache.{board}.{thread}.{msg['no']}.{msg['resto']}.{msg['now']}"
)
key_content = db.r.get(redis_key)
if key_content is not None:
key_content = key_content.decode("ascii")
if key_content == hash:
# This deletes the message since the append at the end won't be hit
continue
# pass
else:
msg["type"] = "update"
db.r.set(redis_key, hash)
time_took = (time.process_time() - start) * 1000
hash_time += time_took
start = time.process_time()
for key2, value in list(msg.items()):
if key2 in ATTRMAP:
msg[ATTRMAP[key2]] = msg[key2]
del msg[key2]
time_took = (time.process_time() - start) * 1000
normal2_time += time_took
start = time.process_time()
if "ts" in msg:
old_time = msg["ts"]
# '08/30/22(Tue)02:25:37'
time_spl = old_time.split(":")
if len(time_spl) == 3:
old_ts = datetime.strptime(old_time, "%m/%d/%y(%a)%H:%M:%S")
else:
old_ts = datetime.strptime(old_time, "%m/%d/%y(%a)%H:%M")
# new_ts = old_ts.isoformat()
new_ts = int(old_ts.timestamp())
msg["ts"] = new_ts
else:
raise Exception("No TS in msg")
time_took = (time.process_time() - start) * 1000
date_time += time_took
start = time.process_time()
if "msg" in msg:
soup = BeautifulSoup(msg["msg"], "html.parser")
msg_str = soup.get_text(separator="\n")
msg["msg"] = msg_str
time_took = (time.process_time() - start) * 1000
soup_time += time_took
# Annotate sentiment/NLP
if "msg" in msg:
# RE_BAD_CHARS.sub("", msg["msg"])
# Language
start = time.process_time()
text = Text(msg["msg"])
try:
lang_code = text.language.code
lang_name = text.language.name
msg["lang_code"] = lang_code
msg["lang_name"] = lang_name
except cld2_error as e:
log.error(f"[{chunk}/{index}] Error detecting language: {e}")
# So below block doesn't fail
lang_code = None
time_took = (time.process_time() - start) * 1000
polyglot_time += time_took
# Blatant discrimination
if lang_code == "en":
# Sentiment
start = time.process_time()
vs = analyzer.polarity_scores(str(msg["msg"]))
addendum = vs["compound"]
msg["sentiment"] = addendum
time_took = (time.process_time() - start) * 1000
sentiment_time += time_took
# Tokens
start = time.process_time()
tokens = preprocess_string(msg["msg"], CUSTOM_FILTERS)
msg["tokens"] = tokens
# n = nlp(msg["msg"])
# for tag in TAGS:
# tag_name = tag.lower()
# tags_flag = [token.lemma_ for token in n if token.pos_ == tag]
# msg[f"words_{tag_name}"] = tags_flag
time_took = (time.process_time() - start) * 1000
nlp_time += time_took
# Add the mutated message to the return buffer
to_store.append(msg)
total_time += (time.process_time() - total_start) * 1000
if MONOLITH_PROCESS_PERFSTATS:
log.debug("=====================================")
log.debug(f"Chunk: {chunk}")
log.debug(f"Index: {index}")
log.debug(f"Sentiment: {sentiment_time}")
log.debug(f"Regex: {regex_time}")
log.debug(f"Polyglot: {polyglot_time}")
log.debug(f"Date: {date_time}")
log.debug(f"NLP: {nlp_time}")
log.debug(f"Normalise: {normalise_time}")
log.debug(f"Hash: {hash_time}")
log.debug(f"Normal2: {normal2_time}")
log.debug(f"Soup: {soup_time}")
log.debug(f"Total: {total_time}")
log.debug("=====================================")
return to_store