284 lines
8.5 KiB
Python
284 lines
8.5 KiB
Python
import asyncio
|
|
import os
|
|
import random
|
|
|
|
# For key generation
|
|
import string
|
|
|
|
# For timing
|
|
import time
|
|
|
|
# Squash errors
|
|
import warnings
|
|
from concurrent.futures import ProcessPoolExecutor
|
|
|
|
# For timestamp processing
|
|
from datetime import datetime
|
|
from math import ceil
|
|
|
|
import orjson
|
|
import regex
|
|
|
|
# For 4chan message parsing
|
|
from bs4 import BeautifulSoup
|
|
|
|
# Tokenisation
|
|
# import spacy
|
|
from gensim.parsing.preprocessing import ( # stem_text,
|
|
preprocess_string,
|
|
remove_stopwords,
|
|
strip_multiple_whitespaces,
|
|
strip_non_alphanum,
|
|
strip_numeric,
|
|
strip_punctuation,
|
|
strip_short,
|
|
strip_tags,
|
|
)
|
|
from numpy import array_split
|
|
from polyglot.detect.base import logger as polyglot_logger
|
|
|
|
# For NLP
|
|
from polyglot.text import Text
|
|
from pycld2 import error as cld2_error
|
|
from siphashc import siphash
|
|
|
|
# For sentiment
|
|
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
|
|
|
|
import db
|
|
import util
|
|
|
|
# 4chan schema
|
|
from schemas.ch4_s import ATTRMAP
|
|
|
|
CUSTOM_FILTERS = [
|
|
lambda x: x.lower(),
|
|
strip_tags, #
|
|
strip_punctuation, #
|
|
strip_multiple_whitespaces,
|
|
strip_numeric,
|
|
remove_stopwords,
|
|
strip_short,
|
|
# stem_text,
|
|
strip_non_alphanum, #
|
|
]
|
|
|
|
RE_BAD_CHARS = regex.compile(r"[\p{Cc}\p{Cs}]+")
|
|
|
|
# Squash errors
|
|
polyglot_logger.setLevel("ERROR")
|
|
warnings.filterwarnings("ignore", category=UserWarning, module="bs4")
|
|
|
|
|
|
# TAGS = ["NOUN", "ADJ", "VERB", "ADV"]
|
|
# nlp = spacy.load("en_core_web_sm", disable=["parser", "ner"])
|
|
|
|
|
|
log = util.get_logger("process")
|
|
|
|
# Maximum number of CPU threads to use for post processing
|
|
CPU_THREADS = int(os.getenv("MONOLITH_PROCESS_THREADS", os.cpu_count()))
|
|
|
|
p = ProcessPoolExecutor(CPU_THREADS)
|
|
|
|
|
|
def get_hash_key():
|
|
hash_key = db.r.get("hashing_key")
|
|
if not hash_key:
|
|
letters = string.ascii_lowercase
|
|
hash_key = "".join(random.choice(letters) for i in range(16))
|
|
log.debug(f"Created new hash key: {hash_key}")
|
|
db.r.set("hashing_key", hash_key)
|
|
else:
|
|
hash_key = hash_key.decode("ascii")
|
|
log.debug(f"Decoded hash key: {hash_key}")
|
|
return hash_key
|
|
|
|
|
|
hash_key = get_hash_key()
|
|
|
|
|
|
@asyncio.coroutine
|
|
async def spawn_processing_threads(data):
|
|
len_data = len(data)
|
|
|
|
loop = asyncio.get_event_loop()
|
|
tasks = []
|
|
|
|
if len(data) < CPU_THREADS * 100:
|
|
split_data = [data]
|
|
else:
|
|
msg_per_core = int(len(data) / CPU_THREADS)
|
|
split_data = array_split(data, ceil(len(data) / msg_per_core))
|
|
for index, split in enumerate(split_data):
|
|
log.debug(f"Delegating processing of {len(split)} messages to thread {index}")
|
|
task = loop.run_in_executor(p, process_data, split)
|
|
tasks.append(task)
|
|
|
|
results = [await task for task in tasks]
|
|
log.debug(
|
|
(
|
|
f"Results from processing of {len_data} messages in "
|
|
f"{len(split_data)} threads: {len(results)}"
|
|
)
|
|
)
|
|
|
|
# Join the results back from the split list
|
|
flat_list = [item for sublist in results for item in sublist]
|
|
await db.store_kafka_batch(flat_list)
|
|
|
|
# log.debug(f"Finished processing {len_data} messages")
|
|
|
|
|
|
def process_data(data):
|
|
to_store = []
|
|
|
|
sentiment_time = 0.0
|
|
regex_time = 0.0
|
|
polyglot_time = 0.0
|
|
date_time = 0.0
|
|
nlp_time = 0.0
|
|
normalise_time = 0.0
|
|
hash_time = 0.0
|
|
normal2_time = 0.0
|
|
soup_time = 0.0
|
|
|
|
total_time = 0.0
|
|
|
|
# Initialise sentiment analyser
|
|
analyzer = SentimentIntensityAnalyzer()
|
|
for msg in data:
|
|
total_start = time.process_time()
|
|
# normalise fields
|
|
start = time.process_time()
|
|
for key, value in list(msg.items()):
|
|
if value is None:
|
|
del msg[key]
|
|
time_took = (time.process_time() - start) * 1000
|
|
normalise_time += time_took
|
|
|
|
# Remove invalid UTF-8 characters
|
|
# IRC and Discord
|
|
start = time.process_time()
|
|
if "msg" in msg:
|
|
msg["msg"] = RE_BAD_CHARS.sub("", msg["msg"])
|
|
|
|
# 4chan - since we change the attributes below
|
|
if "com" in msg:
|
|
msg["com"] = RE_BAD_CHARS.sub("", msg["com"])
|
|
time_took = (time.process_time() - start) * 1000
|
|
regex_time += time_took
|
|
|
|
if msg["src"] == "4ch":
|
|
board = msg["net"]
|
|
thread = msg["channel"]
|
|
|
|
# Calculate hash for post
|
|
start = time.process_time()
|
|
post_normalised = orjson.dumps(msg, option=orjson.OPT_SORT_KEYS)
|
|
hash = siphash(hash_key, post_normalised)
|
|
hash = str(hash)
|
|
redis_key = f"cache.{board}.{thread}.{msg['no']}"
|
|
key_content = db.r.get(redis_key)
|
|
if key_content:
|
|
key_content = key_content.decode("ascii")
|
|
if key_content == hash:
|
|
# This deletes the message since the append at the end won't be hit
|
|
continue
|
|
else:
|
|
msg["type"] = "update"
|
|
db.r.set(redis_key, hash)
|
|
time_took = (time.process_time() - start) * 1000
|
|
hash_time += time_took
|
|
|
|
start = time.process_time()
|
|
for key2, value in list(msg.items()):
|
|
if key2 in ATTRMAP:
|
|
msg[ATTRMAP[key2]] = msg[key2]
|
|
del msg[key2]
|
|
time_took = (time.process_time() - start) * 1000
|
|
normal2_time += time_took
|
|
|
|
start = time.process_time()
|
|
if "ts" in msg:
|
|
old_time = msg["ts"]
|
|
# '08/30/22(Tue)02:25:37'
|
|
time_spl = old_time.split(":")
|
|
if len(time_spl) == 3:
|
|
old_ts = datetime.strptime(old_time, "%m/%d/%y(%a)%H:%M:%S")
|
|
else:
|
|
old_ts = datetime.strptime(old_time, "%m/%d/%y(%a)%H:%M")
|
|
# new_ts = old_ts.isoformat()
|
|
new_ts = int(old_ts.timestamp())
|
|
msg["ts"] = new_ts
|
|
else:
|
|
raise Exception("No TS in msg")
|
|
time_took = (time.process_time() - start) * 1000
|
|
date_time += time_took
|
|
|
|
start = time.process_time()
|
|
if "msg" in msg:
|
|
soup = BeautifulSoup(msg["msg"], "html.parser")
|
|
msg_str = soup.get_text(separator="\n")
|
|
msg["msg"] = msg_str
|
|
time_took = (time.process_time() - start) * 1000
|
|
soup_time += time_took
|
|
|
|
# Annotate sentiment/NLP
|
|
if "msg" in msg:
|
|
# RE_BAD_CHARS.sub("", msg["msg"])
|
|
# Language
|
|
start = time.process_time()
|
|
text = Text(msg["msg"])
|
|
try:
|
|
lang_code = text.language.code
|
|
lang_name = text.language.name
|
|
msg["lang_code"] = lang_code
|
|
msg["lang_name"] = lang_name
|
|
except cld2_error as e:
|
|
log.error(f"Error detecting language: {e}")
|
|
# So below block doesn't fail
|
|
lang_code = None
|
|
time_took = (time.process_time() - start) * 1000
|
|
polyglot_time += time_took
|
|
|
|
# Blatant discrimination
|
|
if lang_code == "en":
|
|
# Sentiment
|
|
start = time.process_time()
|
|
vs = analyzer.polarity_scores(str(msg["msg"]))
|
|
addendum = vs["compound"]
|
|
msg["sentiment"] = addendum
|
|
time_took = (time.process_time() - start) * 1000
|
|
sentiment_time += time_took
|
|
|
|
# Tokens
|
|
start = time.process_time()
|
|
tokens = preprocess_string(msg["msg"], CUSTOM_FILTERS)
|
|
msg["tokens"] = tokens
|
|
# n = nlp(msg["msg"])
|
|
# for tag in TAGS:
|
|
# tag_name = tag.lower()
|
|
# tags_flag = [token.lemma_ for token in n if token.pos_ == tag]
|
|
# msg[f"words_{tag_name}"] = tags_flag
|
|
time_took = (time.process_time() - start) * 1000
|
|
nlp_time += time_took
|
|
|
|
# Add the mutated message to the return buffer
|
|
to_store.append(msg)
|
|
total_time += (time.process_time() - total_start) * 1000
|
|
log.debug("=====================================")
|
|
log.debug(f"Sentiment: {sentiment_time}")
|
|
log.debug(f"Regex: {regex_time}")
|
|
log.debug(f"Polyglot: {polyglot_time}")
|
|
log.debug(f"Date: {date_time}")
|
|
log.debug(f"NLP: {nlp_time}")
|
|
log.debug(f"Normalise: {normalise_time}")
|
|
log.debug(f"Hash: {hash_time}")
|
|
log.debug(f"Normal2: {normal2_time}")
|
|
log.debug(f"Soup: {soup_time}")
|
|
log.debug(f"Total: {total_time}")
|
|
log.debug("=====================================")
|
|
|
|
return to_store
|