# from copy import deepcopy # from datetime import datetime, timedelta from django.conf import settings from elasticsearch import AsyncElasticsearch, Elasticsearch from elasticsearch.exceptions import NotFoundError, RequestError from core.db import StorageBackend, add_defaults # from json import dumps # pp = lambda x: print(dumps(x, indent=2)) from core.db.processing import parse_results from core.lib.parsing import ( QueryError, parse_date_time, parse_index, parse_sentiment, parse_size, parse_sort, parse_source, ) class ElasticsearchBackend(StorageBackend): def __init__(self): super().__init__("Elasticsearch") self.client = None self.async_client = None def initialise(self, **kwargs): """ Inititialise the Elasticsearch API endpoint. """ auth = (settings.ELASTICSEARCH_USERNAME, settings.ELASTICSEARCH_PASSWORD) client = Elasticsearch( settings.ELASTICSEARCH_URL, http_auth=auth, verify_certs=False ) self.client = client async def async_initialise(self, **kwargs): """ Inititialise the Elasticsearch API endpoint in async mode. """ auth = (settings.ELASTICSEARCH_USERNAME, settings.ELASTICSEARCH_PASSWORD) client = AsyncElasticsearch( settings.ELASTICSEARCH_URL, http_auth=auth, verify_certs=False ) self.async_client = client def construct_context_query( self, index, net, channel, src, num, size, type=None, nicks=None ): # Get the initial query query = self.construct_query(None, size, blank=True) extra_must = [] extra_should = [] extra_should2 = [] if num: extra_must.append({"match_phrase": {"num": num}}) if net: extra_must.append({"match_phrase": {"net": net}}) if channel: extra_must.append({"match": {"channel": channel}}) if nicks: for nick in nicks: extra_should2.append({"match": {"nick": nick}}) types = ["msg", "notice", "action", "kick", "topic", "mode"] fields = [ "nick", "ident", "host", "channel", "ts", "msg", "type", "net", "src", "tokens", ] query["fields"] = fields if index == "internal": fields.append("mtype") if channel == "*status" or type == "znc": if {"match": {"channel": channel}} in extra_must: extra_must.remove({"match": {"channel": channel}}) extra_should2 = [] # Type is one of msg or notice # extra_should.append({"match": {"mtype": "msg"}}) # extra_should.append({"match": {"mtype": "notice"}}) extra_should.append({"match": {"type": "znc"}}) extra_should.append({"match": {"type": "self"}}) extra_should2.append({"match": {"type": "znc"}}) extra_should2.append({"match": {"nick": channel}}) elif type == "auth": if {"match": {"channel": channel}} in extra_must: extra_must.remove({"match": {"channel": channel}}) extra_should2 = [] extra_should2.append({"match": {"nick": channel}}) # extra_should2.append({"match": {"mtype": "msg"}}) # extra_should2.append({"match": {"mtype": "notice"}}) extra_should.append({"match": {"type": "query"}}) extra_should2.append({"match": {"type": "self"}}) extra_should.append({"match": {"nick": channel}}) else: for ctype in types: extra_should.append({"match": {"mtype": ctype}}) else: for ctype in types: extra_should.append({"match": {"type": ctype}}) # query = { # "index": index, # "limit": size, # "query": { # "bool": { # "must": [ # # {"equals": {"src": src}}, # # { # # "bool": { # # "should": [*extra_should], # # } # # }, # # { # # "bool": { # # "should": [*extra_should2], # # } # # }, # *extra_must, # ] # } # }, # "fields": fields, # # "_source": False, # } if extra_must: for x in extra_must: query["query"]["bool"]["must"].append(x) if extra_should: query["query"]["bool"]["must"].append({"bool": {"should": [*extra_should]}}) if extra_should2: query["query"]["bool"]["must"].append( {"bool": {"should": [*extra_should2]}} ) return query def construct_query(self, query, size=None, blank=False, **kwargs): """ Accept some query parameters and construct an Elasticsearch query. """ query_base = { # "size": size, "query": {"bool": {"must": []}}, } if size: query_base["size"] = size query_string = { "query_string": { "query": query, # "fields": fields, # "default_field": "msg", # "type": "best_fields", "fuzziness": "AUTO", "fuzzy_transpositions": True, "fuzzy_max_expansions": 50, "fuzzy_prefix_length": 0, # "minimum_should_match": 1, "default_operator": "and", "analyzer": "standard", "lenient": True, "boost": 1, "allow_leading_wildcard": True, # "enable_position_increments": False, "phrase_slop": 3, # "max_determinized_states": 10000, "quote_field_suffix": "", "quote_analyzer": "standard", "analyze_wildcard": False, "auto_generate_synonyms_phrase_query": True, } } if not blank: query_base["query"]["bool"]["must"].append(query_string) return query_base def parse(self, response, **kwargs): parsed = parse_results(response, **kwargs) return parsed def run_query(self, user, search_query, **kwargs): """ Low level helper to run an ES query. Accept a user to pass it to the filter, so we can avoid filtering for superusers. Accept fields and size, for the fields we want to match and the number of results to return. """ if self.client is None: self.initialise() index = kwargs.get("index") try: response = self.client.search(body=search_query, index=index) except RequestError as err: print("Elasticsearch error", err) return err except NotFoundError as err: print("Elasticsearch error", err) return err return response async def async_run_query(self, user, search_query, **kwargs): """ Low level helper to run an ES query. Accept a user to pass it to the filter, so we can avoid filtering for superusers. Accept fields and size, for the fields we want to match and the number of results to return. """ if self.async_client is None: await self.async_initialise() index = kwargs.get("index") try: response = await self.async_client.search(body=search_query, index=index) except RequestError as err: print("Elasticsearch error", err) return err except NotFoundError as err: print("Elasticsearch error", err) return err return response async def schedule_query_results(self, rule_object): """ Helper to run a scheduled query with reduced functionality and async. """ data = rule_object.parsed if "tags" in data: tags = data["tags"] else: tags = [] if "query" in data: query = data["query"][0] data["query"] = query result_map = {} add_bool = [] add_top = [] if "source" in data: total_count = len(data["source"]) total_sources = len(settings.MAIN_SOURCES) + len( settings.SOURCES_RESTRICTED ) if total_count != total_sources: add_top_tmp = {"bool": {"should": []}} for source_iter in data["source"]: add_top_tmp["bool"]["should"].append( {"match_phrase": {"src": source_iter}} ) add_top.append(add_top_tmp) for field, values in data.items(): if field not in ["source", "index", "tags", "query", "sentiment"]: for value in values: add_top.append({"match": {field: value}}) # Bypass the check for query and tags membership since we can search by msg, etc search_query = self.parse_query( data, tags, None, False, add_bool, bypass_check=True ) if rule_object.window is not None: range_query = { "range": { "ts": { "gte": f"now-{rule_object.window}/d", "lte": "now/d", } } } add_top.append(range_query) self.add_bool(search_query, add_bool) self.add_top(search_query, add_top) if "sentiment" in data: search_query["aggs"] = { "avg_sentiment": { "avg": {"field": "sentiment"}, } } for index in data["index"]: if "message" in search_query: self.log.error(f"Error parsing query: {search_query['message']}") continue response = await self.async_run_query( rule_object.user, search_query, index=index, ) self.log.debug(f"Running scheduled query on {index}: {search_query}") # self.log.debug(f"Response from scheduled query: {response}") if isinstance(response, Exception): error = response.info["error"]["root_cause"][0]["reason"] self.log.error(f"Error running scheduled search: {error}") raise QueryError(error) if len(response["hits"]["hits"]) == 0: # No results, skip continue meta, response = self.parse(response, meta=True) # print("Parsed response", response) if "message" in response: self.log.error(f"Error running scheduled search: {response['message']}") continue result_map[index] = (meta, response) # Average aggregation check # Could probably do this in elasticsearch for index, (meta, result) in result_map.items(): # Default to true, if no aggs are found, we still want to match match = True for agg_name, (operator, number) in rule_object.aggs.items(): if agg_name in meta: agg_value = meta["aggs"][agg_name]["value"] # TODO: simplify this, match is default to True if operator == ">": if agg_value > number: match = True else: match = False elif operator == "<": if agg_value < number: match = True else: match = False elif operator == "=": if agg_value == number: match = True else: match = False else: match = False else: # No aggregation found, but it is required match = False result_map[index][0]["aggs"][agg_name]["match"] = match return result_map def query_results( self, request, query_params, size=None, annotate=True, custom_query=False, reverse=False, dedup=False, dedup_fields=None, tags=None, ): add_bool = [] add_top = [] add_top_negative = [] add_defaults(query_params) # Now, run the helpers for SIQTSRSS/ADR # S - Size # I - Index # Q - Query # T - Tags # S - Source # R - Ranges # S - Sort # S - Sentiment # A - Annotate # D - Dedup # R - Reverse # S - Size if request.user.is_anonymous: sizes = settings.MAIN_SIZES_ANON else: sizes = settings.MAIN_SIZES if not size: size = parse_size(query_params, sizes) if isinstance(size, dict): return size # I - Index index = parse_index(request.user, query_params) if isinstance(index, dict): return index # Q/T - Query/Tags search_query = self.parse_query( query_params, tags, size, custom_query, add_bool ) # Query should be a dict, so check if it contains message here if "message" in search_query: return search_query # S - Sources sources = parse_source(request.user, query_params) if isinstance(sources, dict): return sources total_count = len(sources) total_sources = len(settings.MAIN_SOURCES) + len(settings.SOURCES_RESTRICTED) if total_count != total_sources: add_top_tmp = {"bool": {"should": []}} for source_iter in sources: add_top_tmp["bool"]["should"].append( {"match_phrase": {"src": source_iter}} ) add_top.append(add_top_tmp) # R - Ranges # date_query = False from_ts, to_ts = parse_date_time(query_params) if from_ts: range_query = { "range": { "ts": { "gt": from_ts, "lt": to_ts, } } } add_top.append(range_query) # S - Sort sort = parse_sort(query_params) if isinstance(sort, dict): return sort if sort: # For Druid compatibility sort_map = {"ascending": "asc", "descending": "desc"} sorting = [ { "ts": { "order": sort_map[sort], } } ] search_query["sort"] = sorting # S - Sentiment sentiment_r = parse_sentiment(query_params) if isinstance(sentiment_r, dict): return sentiment_r if sentiment_r: sentiment_method, sentiment = sentiment_r range_query_compare = {"range": {"sentiment": {}}} range_query_precise = { "match": { "sentiment": None, } } if sentiment_method == "below": range_query_compare["range"]["sentiment"]["lt"] = sentiment add_top.append(range_query_compare) elif sentiment_method == "above": range_query_compare["range"]["sentiment"]["gt"] = sentiment add_top.append(range_query_compare) elif sentiment_method == "exact": range_query_precise["match"]["sentiment"] = sentiment add_top.append(range_query_precise) elif sentiment_method == "nonzero": range_query_precise["match"]["sentiment"] = 0 add_top_negative.append(range_query_precise) # Add in the additional information we already populated self.add_bool(search_query, add_bool) self.add_top(search_query, add_top) self.add_top(search_query, add_top_negative, negative=True) response = self.query( request.user, search_query, index=index, ) if "message" in response: return response # A/D/R - Annotate/Dedup/Reverse response["object_list"] = self.process_results( response["object_list"], annotate=annotate, dedup=dedup, dedup_fields=dedup_fields, reverse=reverse, ) context = response return context def query_single_result(self, request, query_params): context = self.query_results(request, query_params, size=100) if not context: return {"message": "Failed to run query", "message_class": "danger"} if "message" in context: return context dedup_set = {item["nick"] for item in context["object_list"]} if dedup_set: context["item"] = context["object_list"][0] return context def add_bool(self, search_query, add_bool): """ Add the specified boolean matches to search query. """ if not add_bool: return for item in add_bool: search_query["query"]["bool"]["must"].append({"match_phrase": item}) def add_top(self, search_query, add_top, negative=False): """ Merge add_top with the base of the search_query. """ if not add_top: return if negative: for item in add_top: if "must_not" in search_query["query"]["bool"]: search_query["query"]["bool"]["must_not"].append(item) else: search_query["query"]["bool"]["must_not"] = [item] else: for item in add_top: if "query" not in search_query: search_query["query"] = {"bool": {"must": []}} search_query["query"]["bool"]["must"].append(item)