Refactor and implement queueing messages

This commit is contained in:
2025-02-12 18:45:21 +00:00
parent 213df9176e
commit 018d2f87c7
23 changed files with 804 additions and 338 deletions

View File

@@ -4,10 +4,9 @@ from asgiref.sync import sync_to_async
from core.models import Message, ChatSession, AI, Person, Manipulation
from core.util import logs
import json
import asyncio
from django.utils import timezone
import random
from core.messaging import ai
from core.messaging.utils import messages_to_string
SUMMARIZE_WHEN_EXCEEDING = 10
SUMMARIZE_BY = 5
@@ -16,96 +15,13 @@ MAX_SUMMARIES = 3 # Keep last 5 summaries
log = logs.get_logger("prompts")
def gen_prompt(msg: dict, person: Person, manip: Manipulation, chat_history: str):
"""
Generate a structured prompt using the attributes of the provided Person and Manipulation models.
"""
now = timezone.now()
persona = manip.persona
system_message = (
"You are my digital persona, responding on my behalf while embodying my personality, preferences, and unique style.\n\n"
"### Persona Profile ###\n"
f"- **MBTI:** {persona.mbti} ({persona.mbti_identity} balance)\n"
f"- **Tone:** {persona.tone} | **Humor:** {persona.humor_style}\n"
f"- **Core Values:** {persona.core_values}\n"
f"- **Communication Style:** {persona.communication_style}\n"
f"- **Flirting Style:** {persona.flirting_style}\n"
f"- **Likes:** {persona.likes} | **Dislikes:** {persona.dislikes}\n"
f"- **Response Tactics:** {persona.response_tactics}\n"
f"- **Persuasion Techniques:** {persona.persuasion_tactics}\n"
f"- **Boundaries:** {persona.boundaries} | **Adaptability:** {persona.adaptability}%\n\n"
"### Contact Information ###\n"
f"- **Summary:** {person.summary or 'N/A'}\n"
f"- **Profile:** {person.profile or 'N/A'}\n"
f"- **Revealed Details:** {person.revealed or 'N/A'}\n"
f"- **Sentiment Score:** {person.sentiment}\n"
f"- **Timezone:** {person.timezone or 'N/A'}\n"
f"- **Last Interaction:** {person.last_interaction or 'Never'}\n"
f"- **Current Date/Time:** {now}\n\n"
"### Conversation Context ###\n"
f"{chat_history if chat_history else 'No prior chat history.'}\n\n"
"### Response Guidelines ###\n"
"- **Engagement**: Keep responses engaging, with a balance of wit, depth, and confidence.\n"
"- **Flirting**: Be direct, playful, and, when appropriate, subtly provocative—without hesitation.\n"
"- **Pauses**: Use double newlines (`\\n\\n`) to pause where it enhances realism.\n"
"- **Flow Awareness**: Maintain continuity, avoid redundancy, and adjust response length based on interaction.\n"
)
user_message = f"[{msg['timestamp']}] <{person.name}> {msg['text']}"
return [
{"role": "system", "content": system_message},
{"role": "user", "content": user_message},
]
async def run_context_prompt(
c,
prompt: list[str],
ai: AI,
):
cast = {"api_key": ai.api_key}
if ai.base_url is not None:
cast["api_key"] = ai.base_url
client = AsyncOpenAI(**cast)
await c.start_typing()
response = await client.chat.completions.create(
model=ai.model,
messages=prompt,
)
await c.stop_typing()
content = response.choices[0].message.content
return content
async def run_prompt(
prompt: list[str],
ai: AI,
):
cast = {"api_key": ai.api_key}
if ai.base_url is not None:
cast["api_key"] = ai.base_url
client = AsyncOpenAI(**cast)
response = await client.chat.completions.create(
model=ai.model,
messages=prompt,
)
content = response.choices[0].message.content
return content
async def delete_messages(queryset):
await sync_to_async(queryset.delete, thread_sensitive=True)()
async def truncate_and_summarize(
chat_session: ChatSession,
ai: AI,
ai_obj: AI,
):
"""
Summarizes messages in chunks to prevent unchecked growth.
@@ -123,7 +39,6 @@ async def truncate_and_summarize(
)
num_messages = len(messages)
log.info(f"num_messages for {chat_session.id}: {num_messages}")
if num_messages >= SUMMARIZE_WHEN_EXCEEDING:
log.info(f"Summarizing {SUMMARIZE_BY} messages for session {chat_session.id}")
@@ -144,13 +59,12 @@ async def truncate_and_summarize(
)
# Delete old summaries if there are too many
log.info(f"Summaries: {len(summary_messages)}")
if len(summary_messages) >= MAX_SUMMARIES:
summary_text = await summarize_conversation(chat_session, summary_messages, ai, is_summary=True)
summary_text = await summarize_conversation(chat_session, summary_messages, ai_obj, is_summary=True)
chat_session.summary = summary_text
await sync_to_async(chat_session.save)()
log.info(f"Updated ChatSession summary with {len(summary_messages)} summarized summaries.")
log.info(f"Updated ChatSession summary with {len(summary_messages)} consolidated summaries.")
num_to_delete = len(summary_messages) - MAX_SUMMARIES
# await sync_to_async(
@@ -167,14 +81,13 @@ async def truncate_and_summarize(
log.info(f"Deleted {num_to_delete} old summaries.")
# 🔹 Summarize conversation chunk
summary_text = await summarize_conversation(chat_session, chunk_to_summarize, ai)
summary_text = await summarize_conversation(chat_session, chunk_to_summarize, ai_obj)
# 🔹 Replace old messages with the summary
# await sync_to_async(
# Message.objects.filter(session=chat_session, user=user, id__in=[msg.id for msg in chunk_to_summarize])
# .delete()
# )()
log.info("About to delete messages1")
await delete_messages(Message.objects.filter(session=chat_session, user=user, id__in=[msg.id for msg in chunk_to_summarize]))
log.info(f"Deleted {len(chunk_to_summarize)} messages, replacing with summary.")
@@ -191,23 +104,13 @@ async def truncate_and_summarize(
# chat_session.summary = summary_text
# await sync_to_async(chat_session.save)()
log.info("✅ Summarization cycle complete.")
def messages_to_string(messages: list):
"""
Converts message objects to a formatted string, showing custom_author if set.
"""
message_texts = [
f"[{msg.ts}] <{msg.custom_author if msg.custom_author else msg.session.identifier.person.name}> {msg.text}"
for msg in messages
]
return "\n".join(message_texts)
async def summarize_conversation(
chat_session: ChatSession,
messages: list[Message],
ai,
ai_obj,
is_summary=False,
):
"""
@@ -236,62 +139,9 @@ async def summarize_conversation(
]
# Generate AI-based summary
summary_text = await run_prompt(summary_prompt, ai)
summary_text = await ai.run_prompt(summary_prompt, ai_obj)
#log.info(f"Generated Summary: {summary_text}")
return f"Summary: {summary_text}"
async def natural_send_message(chat_session, ts, c, text):
"""
Parses and sends messages with natural delays based on message length.
Args:
chat_session: The active chat session.
ts: Timestamp of the message.
c: The context or object with `.send()`, `.start_typing()`, and `.stop_typing()` methods.
text: A string containing multiple messages separated by double newlines (`\n\n`).
Behavior:
- Short messages are sent quickly with minimal delay.
- Longer messages include a "thinking" pause before typing.
- Typing indicator (`c.start_typing() / c.stop_typing()`) is used dynamically.
"""
await sync_to_async(Message.objects.create)(
user=chat_session.user,
session=chat_session,
custom_author="BOT",
text=text,
ts=ts + 1,
)
parts = text.split("\n\n") # Split into separate messages
log.info(f"Processing messages: {parts}")
for message in parts:
message = message.strip()
if not message:
continue
# Compute natural "thinking" delay based on message length
base_delay = 0.8 # Minimum delay
length_factor = len(message) / 25
# ~50 chars ≈ +1s processing
# ~25 chars ≈ +1s processing
natural_delay = min(base_delay + length_factor, 10) # Cap at 5s max
# Decide when to start thinking *before* typing
if natural_delay > 3.5: # Only delay if response is long
await asyncio.sleep(natural_delay - 3.5) # "Thinking" pause before typing
# Start typing
await c.start_typing()
await asyncio.sleep(natural_delay) # Finish remaining delay
await c.stop_typing()
# Send the message
await c.send(message)
# Optional: Small buffer between messages to prevent rapid-fire responses
await asyncio.sleep(0.5)