Implement AI workspace and mitigation workflow

This commit is contained in:
2026-02-15 04:27:28 +00:00
parent de2b9a9bbb
commit 2d3b8fdac6
64 changed files with 7669 additions and 769 deletions

View File

@@ -1,26 +1,26 @@
# Deferred processing library
from core.util import logs
from pydantic import BaseModel
import asyncio
from typing import Annotated, Optional
from uuid import UUID
from pydantic import ValidationError
from core.models import QueuedMessage, Message, PersonIdentifier, User
from core.clients import signal
from core.lib.prompts.functions import delete_messages
from asgiref.sync import sync_to_async
from django.conf import settings
from core.clients import signalapi
import asyncio
from pydantic import BaseModel, ValidationError
from core.clients import signal, signalapi
from core.lib.prompts.functions import delete_messages
from core.models import Message, PersonIdentifier, QueuedMessage, User
from core.util import logs
log = logs.get_logger("deferred")
class DeferredDetail(BaseModel):
reply_to_self: bool
reply_to_others: bool
is_outgoing_message: bool
class DeferredRequest(BaseModel):
type: str
method: str
@@ -32,33 +32,35 @@ class DeferredRequest(BaseModel):
detail: Optional[DeferredDetail] = None
attachments: Optional[list] = None
async def send_message(db_obj):
recipient_uuid = db_obj.session.identifier.identifier
text = db_obj.text
recipient_uuid = db_obj.session.identifier.identifier
text = db_obj.text
send = lambda x: signalapi.send_message_raw(recipient_uuid, x) # returns ts
start_t = lambda: signalapi.start_typing(recipient_uuid)
stop_t = lambda: signalapi.stop_typing(recipient_uuid)
send = lambda x: signalapi.send_message_raw(recipient_uuid, x) # returns ts
start_t = lambda: signalapi.start_typing(recipient_uuid)
stop_t = lambda: signalapi.stop_typing(recipient_uuid)
tss = await natural.natural_send_message(
text,
send,
start_t,
stop_t,
) # list of ts
# result = await send_message_raw(recipient_uuid, text)
await sync_to_async(db_obj.delete)()
result = [x for x in tss if x] # all trueish ts
if result: # if at least one message was sent
ts1 = result.pop() # pick a time
log.info(f"signal message create {text}")
await sync_to_async(Message.objects.create)(
user=db_obj.session.user,
session=db_obj.session,
custom_author="BOT",
text=text,
ts=ts1, # use that time in db
)
tss = await natural.natural_send_message(
text,
send,
start_t,
stop_t,
) # list of ts
#result = await send_message_raw(recipient_uuid, text)
await sync_to_async(db_obj.delete)()
result = [x for x in tss if x] # all trueish ts
if result: # if at least one message was sent
ts1 = result.pop() # pick a time
log.info(f"signal message create {text}")
await sync_to_async(Message.objects.create)(
user=db_obj.session.user,
session=db_obj.session,
custom_author="BOT",
text=text,
ts=ts1, # use that time in db
)
async def process_deferred(data: dict, **kwargs):
try:
@@ -68,12 +70,11 @@ async def process_deferred(data: dict, **kwargs):
except ValidationError as e:
log.info(f"Validation Error: {e}")
return
method = validated_data.method
user_id = validated_data.user_id
message_id = validated_data.message_id
if method == "accept_message":
try:
message = await sync_to_async(QueuedMessage.objects.get)(
@@ -91,7 +92,7 @@ async def process_deferred(data: dict, **kwargs):
else:
log.warning(f"Protocol not supported: {message.session.identifier.service}")
return
elif method == "xmpp": # send xmpp message
elif method == "xmpp": # send xmpp message
xmpp = kwargs.get("xmpp")
service = validated_data.service
msg = validated_data.msg
@@ -115,18 +116,28 @@ async def process_deferred(data: dict, **kwargs):
continue
# Attach fetched file to XMPP
xmpp_attachments.append({
"content": fetched["content"],
"content_type": fetched["content_type"],
"filename": fetched["filename"],
"size": fetched["size"],
})
xmpp_attachments.append(
{
"content": fetched["content"],
"content_type": fetched["content_type"],
"filename": fetched["filename"],
"size": fetched["size"],
}
)
for identifier in identifiers:
#recipient_jid = f"{identifier.user.username}@{settings.XMPP_ADDRESS}"
# recipient_jid = f"{identifier.user.username}@{settings.XMPP_ADDRESS}"
user = identifier.user
log.info(f"Sending {len(xmpp_attachments)} attachments from Signal to XMPP.")
await xmpp.send_from_external(user, identifier, msg, validated_data.detail, attachments=xmpp_attachments)
log.info(
f"Sending {len(xmpp_attachments)} attachments from Signal to XMPP."
)
await xmpp.send_from_external(
user,
identifier,
msg,
validated_data.detail,
attachments=xmpp_attachments,
)
else:
log.warning(f"Method not yet supported: {method}")
return
return

View File

@@ -339,4 +339,4 @@ To make comments about being messaged late, keep in mind THEIR time zone.
Contact: hi (their time zone is latvia and my current time is 22:30)
Me: hi, its late there. whats up?
"""
"""

View File

@@ -1,147 +1,12 @@
from core.lib.prompts import bases
from openai import AsyncOpenAI
"""
Prompt utility helpers.
Legacy summarization-based history compaction was intentionally removed.
History is now preserved in storage and bounded only at prompt-build time.
"""
from asgiref.sync import sync_to_async
from core.models import Message, ChatSession, AI, Person, Manipulation
from core.util import logs
import json
from django.utils import timezone
from core.messaging import ai
from core.messaging.utils import messages_to_string
SUMMARIZE_WHEN_EXCEEDING = 10
SUMMARIZE_BY = 5
MAX_SUMMARIES = 3 # Keep last 5 summaries
log = logs.get_logger("prompts")
async def delete_messages(queryset):
await sync_to_async(queryset.delete, thread_sensitive=True)()
async def truncate_and_summarize(
chat_session: ChatSession,
ai_obj: AI,
):
"""
Summarizes messages in chunks to prevent unchecked growth.
- Summarizes only non-summary messages.
- Deletes older summaries if too many exist.
- Ensures only messages belonging to `chat_session.user` are modified.
"""
user = chat_session.user # Store the user for ownership checks
# 🔹 Get non-summary messages owned by the session's user
messages = await sync_to_async(list)(
Message.objects.filter(session=chat_session, user=user)
.exclude(custom_author="SUM")
.order_by("ts")
)
num_messages = len(messages)
if num_messages >= SUMMARIZE_WHEN_EXCEEDING:
log.info(f"Summarizing {SUMMARIZE_BY} messages for session {chat_session.id}")
# Get the first `SUMMARIZE_BY` non-summary messages
chunk_to_summarize = messages[:SUMMARIZE_BY]
if not chunk_to_summarize:
log.warning("No messages available to summarize (only summaries exist). Skipping summarization.")
return
last_ts = chunk_to_summarize[-1].ts # Preserve timestamp
# 🔹 Get past summaries, keeping only the last few (owned by the session user)
summary_messages = await sync_to_async(list)(
Message.objects.filter(session=chat_session, user=user, custom_author="SUM")
.order_by("ts")
)
# Delete old summaries if there are too many
if len(summary_messages) >= MAX_SUMMARIES:
summary_text = await summarize_conversation(chat_session, summary_messages, ai_obj, is_summary=True)
chat_session.summary = summary_text
await sync_to_async(chat_session.save)()
log.info(f"Updated ChatSession summary with {len(summary_messages)} consolidated summaries.")
num_to_delete = len(summary_messages) - MAX_SUMMARIES
# await sync_to_async(
# Message.objects.filter(session=chat_session, user=user, id__in=[msg.id for msg in summary_messages[:num_to_delete]])
# .delete()
# )()
await delete_messages(
Message.objects.filter(
session=chat_session,
user=user,
id__in=[msg.id for msg in summary_messages[:num_to_delete]]
)
)
log.info(f"Deleted {num_to_delete} old summaries.")
# 🔹 Summarize conversation chunk
summary_text = await summarize_conversation(chat_session, chunk_to_summarize, ai_obj)
# 🔹 Replace old messages with the summary
# await sync_to_async(
# Message.objects.filter(session=chat_session, user=user, id__in=[msg.id for msg in chunk_to_summarize])
# .delete()
# )()
await delete_messages(Message.objects.filter(session=chat_session, user=user, id__in=[msg.id for msg in chunk_to_summarize]))
log.info(f"Deleted {len(chunk_to_summarize)} messages, replacing with summary.")
# 🔹 Store new summary message (ensuring session=user consistency)
await sync_to_async(Message.objects.create)(
user=user,
session=chat_session,
custom_author="SUM",
text=summary_text,
ts=last_ts, # Preserve timestamp
)
# 🔹 Update ChatSession summary with latest merged summary
# chat_session.summary = summary_text
# await sync_to_async(chat_session.save)()
async def summarize_conversation(
chat_session: ChatSession,
messages: list[Message],
ai_obj,
is_summary=False,
):
"""
Summarizes all stored messages into a single summary.
- If `is_summary=True`, treats input as previous summaries and merges them while keeping detail.
- If `is_summary=False`, summarizes raw chat messages concisely.
"""
log.info(f"Summarizing messages for session {chat_session.id}")
# Convert messages to structured text format
message_texts = messages_to_string(messages)
#log.info(f"Raw messages to summarize:\n{message_texts}")
# Select appropriate summarization instruction
instruction = (
"Merge and refine these past summaries, keeping critical details and structure intact."
if is_summary
else "Summarize this conversation concisely, maintaining important details and tone."
)
summary_prompt = [
{"role": "system", "content": instruction},
{"role": "user", "content": f"Conversation:\n{message_texts}\n\nProvide a clear and structured summary:"},
]
# Generate AI-based summary
summary_text = await ai.run_prompt(summary_prompt, ai_obj)
#log.info(f"Generated Summary: {summary_text}")
return f"Summary: {summary_text}"