from core.lib.prompts import bases from openai import AsyncOpenAI from asgiref.sync import sync_to_async from core.models import Message, ChatSession, AI, Person, Manipulation from core.util import logs import json from django.utils import timezone from core.messaging import ai from core.messaging.utils import messages_to_string SUMMARIZE_WHEN_EXCEEDING = 10 SUMMARIZE_BY = 5 MAX_SUMMARIES = 3 # Keep last 5 summaries log = logs.get_logger("prompts") async def delete_messages(queryset): await sync_to_async(queryset.delete, thread_sensitive=True)() async def truncate_and_summarize( chat_session: ChatSession, ai_obj: AI, ): """ Summarizes messages in chunks to prevent unchecked growth. - Summarizes only non-summary messages. - Deletes older summaries if too many exist. - Ensures only messages belonging to `chat_session.user` are modified. """ user = chat_session.user # Store the user for ownership checks # 🔹 Get non-summary messages owned by the session's user messages = await sync_to_async(list)( Message.objects.filter(session=chat_session, user=user) .exclude(custom_author="SUM") .order_by("ts") ) num_messages = len(messages) if num_messages >= SUMMARIZE_WHEN_EXCEEDING: log.info(f"Summarizing {SUMMARIZE_BY} messages for session {chat_session.id}") # Get the first `SUMMARIZE_BY` non-summary messages chunk_to_summarize = messages[:SUMMARIZE_BY] if not chunk_to_summarize: log.warning("No messages available to summarize (only summaries exist). Skipping summarization.") return last_ts = chunk_to_summarize[-1].ts # Preserve timestamp # 🔹 Get past summaries, keeping only the last few (owned by the session user) summary_messages = await sync_to_async(list)( Message.objects.filter(session=chat_session, user=user, custom_author="SUM") .order_by("ts") ) # Delete old summaries if there are too many if len(summary_messages) >= MAX_SUMMARIES: summary_text = await summarize_conversation(chat_session, summary_messages, ai_obj, is_summary=True) chat_session.summary = summary_text await sync_to_async(chat_session.save)() log.info(f"Updated ChatSession summary with {len(summary_messages)} consolidated summaries.") num_to_delete = len(summary_messages) - MAX_SUMMARIES # await sync_to_async( # Message.objects.filter(session=chat_session, user=user, id__in=[msg.id for msg in summary_messages[:num_to_delete]]) # .delete() # )() await delete_messages( Message.objects.filter( session=chat_session, user=user, id__in=[msg.id for msg in summary_messages[:num_to_delete]] ) ) log.info(f"Deleted {num_to_delete} old summaries.") # 🔹 Summarize conversation chunk summary_text = await summarize_conversation(chat_session, chunk_to_summarize, ai_obj) # 🔹 Replace old messages with the summary # await sync_to_async( # Message.objects.filter(session=chat_session, user=user, id__in=[msg.id for msg in chunk_to_summarize]) # .delete() # )() await delete_messages(Message.objects.filter(session=chat_session, user=user, id__in=[msg.id for msg in chunk_to_summarize])) log.info(f"Deleted {len(chunk_to_summarize)} messages, replacing with summary.") # 🔹 Store new summary message (ensuring session=user consistency) await sync_to_async(Message.objects.create)( user=user, session=chat_session, custom_author="SUM", text=summary_text, ts=last_ts, # Preserve timestamp ) # 🔹 Update ChatSession summary with latest merged summary # chat_session.summary = summary_text # await sync_to_async(chat_session.save)() async def summarize_conversation( chat_session: ChatSession, messages: list[Message], ai_obj, is_summary=False, ): """ Summarizes all stored messages into a single summary. - If `is_summary=True`, treats input as previous summaries and merges them while keeping detail. - If `is_summary=False`, summarizes raw chat messages concisely. """ log.info(f"Summarizing messages for session {chat_session.id}") # Convert messages to structured text format message_texts = messages_to_string(messages) #log.info(f"Raw messages to summarize:\n{message_texts}") # Select appropriate summarization instruction instruction = ( "Merge and refine these past summaries, keeping critical details and structure intact." if is_summary else "Summarize this conversation concisely, maintaining important details and tone." ) summary_prompt = [ {"role": "system", "content": instruction}, {"role": "user", "content": f"Conversation:\n{message_texts}\n\nProvide a clear and structured summary:"}, ] # Generate AI-based summary summary_text = await ai.run_prompt(summary_prompt, ai_obj) #log.info(f"Generated Summary: {summary_text}") return f"Summary: {summary_text}"