fisk/core/trading/active_management.py

343 lines
12 KiB
Python
Raw Normal View History

from copy import deepcopy
2023-02-17 07:20:15 +00:00
from datetime import datetime
from decimal import Decimal as D
from core.exchanges.convert import (
convert_trades,
sl_percent_to_price,
tp_percent_to_price,
)
from core.trading import assetfilter, checks, market, risk
from core.trading.crossfilter import crossfilter
2023-02-17 07:20:15 +00:00
from core.trading.market import get_base_quote, get_trade_size_in_base
class ActiveManagement(object):
def __init__(self, strategy):
self.strategy = strategy
2023-02-17 07:20:15 +00:00
self.policy = strategy.active_management_policy
self.trades = []
self.balance = None
self.balance_usd = None
2023-02-17 07:20:15 +00:00
def get_trades(self):
if not self.trades:
self.trades = self.strategy.account.client.get_all_open_trades()
return self.trades
def get_balance(self, return_usd=False):
if return_usd:
if self.balance_usd is None:
self.balance_usd = self.strategy.account.client.get_balance(
return_usd=True
)
else:
return self.balance_usd
2023-02-17 07:20:15 +00:00
else:
if self.balance is None:
self.balance = self.strategy.account.client.get_balance(
return_usd=False
)
else:
return self.balance
2023-02-17 07:20:15 +00:00
2023-02-17 17:05:52 +00:00
def handle_violation(self, check_type, action, trade, **kwargs):
print("VIOLATION", check_type, action, trade, kwargs)
2023-02-17 07:20:15 +00:00
def check_trading_time(self, trade):
2023-02-17 17:05:52 +00:00
open_ts = trade["open_time"]
2023-02-17 07:20:15 +00:00
open_ts_as_date = datetime.strptime(open_ts, "%Y-%m-%dT%H:%M:%S.%fZ")
trading_time_pass = checks.within_trading_times(self.strategy, open_ts_as_date)
if not trading_time_pass:
self.handle_violation(
"trading_time", self.policy.when_trading_time_violated, trade
)
def check_trends(self, trade):
2023-02-17 17:05:52 +00:00
direction = trade["direction"]
2023-02-17 07:20:15 +00:00
symbol = trade["symbol"]
trends_pass = checks.within_trends(self.strategy, symbol, direction)
if not trends_pass:
self.handle_violation("trends", self.policy.when_trends_violated, trade)
def check_position_size(self, trade):
2023-02-17 17:05:52 +00:00
"""
Check the position size is within the allowed deviation.
WARNING: This uses the current balance, not the balance at the time of the
trade.
WARNING: This uses the current symbol prices, not those at the time of the
trade.
2023-02-17 17:05:52 +00:00
This should normally be run every 5 seconds, so this is fine.
"""
# TODO: add the trade value to the balance
# Need to determine which prices to use
2023-02-17 07:20:15 +00:00
balance = self.get_balance()
2023-02-17 17:05:52 +00:00
direction = trade["direction"]
2023-02-17 07:20:15 +00:00
symbol = trade["symbol"]
2023-02-17 17:05:52 +00:00
# TODO:
2023-02-17 07:20:15 +00:00
base, quote = get_base_quote(self.strategy.account.exchange, symbol)
expected_trade_size = get_trade_size_in_base(
direction, self.strategy.account, self.strategy, balance, base
)
deviation = D(0.05) # 5%
2023-02-17 17:05:52 +00:00
actual_trade_size = D(trade["amount"])
2023-02-17 07:20:15 +00:00
# Ensure the trade size not above the expected trade size by more than 5%
max_trade_size = expected_trade_size + (deviation * expected_trade_size)
within_max_trade_size = actual_trade_size <= max_trade_size
if not within_max_trade_size:
self.handle_violation(
2023-02-17 17:05:52 +00:00
"position_size",
self.policy.when_position_size_violated,
trade,
{"size": expected_trade_size},
)
def check_protection(self, trade):
deviation = D(0.05) # 5%
# fmt: off
2023-02-17 17:05:52 +00:00
matches = {
"stop_loss_percent": self.strategy.order_settings.stop_loss_percent,
"take_profit_percent": self.strategy.order_settings.take_profit_percent,
"trailing_stop_percent":
self.strategy.order_settings.trailing_stop_loss_percent,
2023-02-17 17:05:52 +00:00
}
violations = {}
for key, expected in matches.items():
if expected == 0:
continue
2023-02-17 17:05:52 +00:00
if key in trade:
actual = D(trade[key])
expected = D(expected)
min_val = expected - (deviation * expected)
max_val = expected + (deviation * expected)
within_deviation = min_val <= actual <= max_val
else:
within_deviation = False
if not within_deviation:
# violations[key] = expected
if key == "take_profit_percent":
tp_price = tp_percent_to_price(
expected,
trade["side"],
trade["current_price"],
trade["amount"],
trade["pl"],
)
violations["take_profit_price"] = tp_price
elif key == "stop_loss_percent":
sl_price = sl_percent_to_price(
expected,
trade["side"],
trade["current_price"],
trade["amount"],
trade["pl"],
)
violations["stop_loss_price"] = sl_price
elif key == "trailing_stop_loss_percent":
tsl_price = sl_percent_to_price(
expected,
trade["side"],
trade["current_price"],
trade["amount"],
trade["pl"],
)
violations["trailing_stop_loss_price"] = tsl_price
2023-02-17 17:05:52 +00:00
if violations:
self.handle_violation(
"protection", self.policy.when_protection_violated, trade, violations
2023-02-17 07:20:15 +00:00
)
def check_asset_groups(self, trade):
if self.strategy.asset_group is not None:
base, quote = get_base_quote(
self.strategy.account.exchange, trade["symbol"]
)
allowed = assetfilter.get_allowed(
self.strategy.asset_group, base, quote, trade["side"]
)
if not allowed:
self.handle_violation(
"asset_group", self.policy.when_asset_groups_violated, trade
)
def get_sorted_trades_copy(self, trades, reverse=True):
trades_copy = deepcopy(trades)
# sort by open time, newest first
trades_copy.sort(
key=lambda x: datetime.strptime(x["open_time"], "%Y-%m-%dT%H:%M:%S.%fZ"),
reverse=reverse,
)
return trades_copy
def check_crossfilter(self, trades):
close_trades = []
trades_copy = self.get_sorted_trades_copy(trades)
iterations = 0
finished = []
# Recursively run crossfilter on the newest-first list until we have no more
# conflicts
while not len(finished) == len(trades):
iterations += 1
if iterations > 10000:
raise Exception("Too many iterations")
# For each trade
for trade in trades_copy:
# Abort if we've already checked this trade
if trade in close_trades:
continue
# Calculate trades excluding this one
# Also remove if we have already checked this
others = [
t
for t in trades_copy
if t["id"] != trade["id"] and t not in close_trades
]
symbol = trade["symbol"]
direction = trade["direction"]
func = "entry"
# Check if this trade is filtered, pretending we are opening it
# And passing the remaining trades as the other trades in the account
filtered = crossfilter(
self.strategy.account, symbol, direction, func, all_positions=others
)
if not filtered:
# This trade is fine, add it to finished
finished.append(trade)
continue
if filtered["action"] == "rejected":
# It's rejected, add it to the close trades list
# And don't check it again
finished.append(trade)
close_trades.append(trade)
if not close_trades:
return
if close_trades:
for trade in close_trades:
self.handle_violation(
"crossfilter", self.policy.when_crossfilter_violated, trade
)
def check_max_open_trades(self, trades):
if self.strategy.risk_model is None:
return
max_open_pass = risk.check_max_open_trades(self.strategy.risk_model, trades)
if not max_open_pass:
trades_copy = self.get_sorted_trades_copy(trades, reverse=False)
# fmt: off
trades_over_limit = trades_copy[self.strategy.risk_model.max_open_trades:]
for trade in trades_over_limit:
self.handle_violation(
"max_open_trades",
self.policy.when_max_open_trades_violated,
trade,
)
def check_max_open_trades_per_symbol(self, trades):
if self.strategy.risk_model is None:
return
max_open_pass = risk.check_max_open_trades_per_symbol(
self.strategy.risk_model, trades, return_symbols=True
)
max_open_pass = list(max_open_pass)
if max_open_pass:
trades_copy = self.get_sorted_trades_copy(trades, reverse=False)
trades_over_limit = []
for symbol in max_open_pass:
symbol_trades = [x for x in trades_copy if x["symbol"] == symbol]
# fmt: off
exceeding_limit = symbol_trades[
self.strategy.risk_model.max_open_trades_per_symbol:
]
for x in exceeding_limit:
trades_over_limit.append(x)
for trade in trades_over_limit:
self.handle_violation(
"max_open_trades_per_symbol",
self.policy.when_max_open_trades_violated,
trade,
)
def check_max_loss(self):
if self.strategy.risk_model is None:
return
check_passed = risk.check_max_loss(
self.strategy.risk_model,
self.strategy.account.initial_balance,
self.get_balance(),
)
if not check_passed:
self.handle_violation(
"max_loss", self.policy.when_max_loss_violated, None # Close all trades
)
def check_max_risk(self, trades):
if self.strategy.risk_model is None:
return
close_trades = []
trades_copy = self.get_sorted_trades_copy(trades, reverse=False)
market.convert_trades_to_usd(self.strategy.account, trades_copy)
iterations = 0
finished = False
while not finished:
iterations += 1
if iterations > 10000:
raise Exception("Too many iterations")
check_passed = risk.check_max_risk(
self.strategy.risk_model,
self.get_balance(return_usd=True),
trades_copy,
)
if check_passed:
finished = True
else:
# Add the newest trade to close_trades and remove it from trades_copy
close_trades.append(trades_copy[-1])
trades_copy = trades_copy[:-1]
if close_trades:
for trade in close_trades:
self.handle_violation(
"max_risk", self.policy.when_max_risk_violated, trade
)
def run_checks(self):
2023-02-17 17:05:52 +00:00
converted_trades = convert_trades(self.get_trades())
for trade in converted_trades:
2023-02-17 07:20:15 +00:00
self.check_trading_time(trade)
self.check_trends(trade)
self.check_position_size(trade)
2023-02-17 17:05:52 +00:00
self.check_protection(trade)
self.check_asset_groups(trade)
self.check_crossfilter(converted_trades)
self.check_max_open_trades(converted_trades)
self.check_max_open_trades_per_symbol(converted_trades)
self.check_max_loss()
self.check_max_risk(converted_trades)
2023-02-17 07:20:15 +00:00
# Trading Time
# Max loss
# Trends
# Asset Groups
# Position Size
# Protection
# Max open positions
# Max open positions per asset
# Max risk
# Crossfilter