Files
GIA/core/lib/prompts/functions.py

148 lines
5.3 KiB
Python

from core.lib.prompts import bases
from openai import AsyncOpenAI
from asgiref.sync import sync_to_async
from core.models import Message, ChatSession, AI, Person, Manipulation
from core.util import logs
import json
from django.utils import timezone
from core.messaging import ai
from core.messaging.utils import messages_to_string
SUMMARIZE_WHEN_EXCEEDING = 10
SUMMARIZE_BY = 5
MAX_SUMMARIES = 3 # Keep last 5 summaries
log = logs.get_logger("prompts")
async def delete_messages(queryset):
await sync_to_async(queryset.delete, thread_sensitive=True)()
async def truncate_and_summarize(
chat_session: ChatSession,
ai_obj: AI,
):
"""
Summarizes messages in chunks to prevent unchecked growth.
- Summarizes only non-summary messages.
- Deletes older summaries if too many exist.
- Ensures only messages belonging to `chat_session.user` are modified.
"""
user = chat_session.user # Store the user for ownership checks
# 🔹 Get non-summary messages owned by the session's user
messages = await sync_to_async(list)(
Message.objects.filter(session=chat_session, user=user)
.exclude(custom_author="SUM")
.order_by("ts")
)
num_messages = len(messages)
if num_messages >= SUMMARIZE_WHEN_EXCEEDING:
log.info(f"Summarizing {SUMMARIZE_BY} messages for session {chat_session.id}")
# Get the first `SUMMARIZE_BY` non-summary messages
chunk_to_summarize = messages[:SUMMARIZE_BY]
if not chunk_to_summarize:
log.warning("No messages available to summarize (only summaries exist). Skipping summarization.")
return
last_ts = chunk_to_summarize[-1].ts # Preserve timestamp
# 🔹 Get past summaries, keeping only the last few (owned by the session user)
summary_messages = await sync_to_async(list)(
Message.objects.filter(session=chat_session, user=user, custom_author="SUM")
.order_by("ts")
)
# Delete old summaries if there are too many
if len(summary_messages) >= MAX_SUMMARIES:
summary_text = await summarize_conversation(chat_session, summary_messages, ai_obj, is_summary=True)
chat_session.summary = summary_text
await sync_to_async(chat_session.save)()
log.info(f"Updated ChatSession summary with {len(summary_messages)} consolidated summaries.")
num_to_delete = len(summary_messages) - MAX_SUMMARIES
# await sync_to_async(
# Message.objects.filter(session=chat_session, user=user, id__in=[msg.id for msg in summary_messages[:num_to_delete]])
# .delete()
# )()
await delete_messages(
Message.objects.filter(
session=chat_session,
user=user,
id__in=[msg.id for msg in summary_messages[:num_to_delete]]
)
)
log.info(f"Deleted {num_to_delete} old summaries.")
# 🔹 Summarize conversation chunk
summary_text = await summarize_conversation(chat_session, chunk_to_summarize, ai_obj)
# 🔹 Replace old messages with the summary
# await sync_to_async(
# Message.objects.filter(session=chat_session, user=user, id__in=[msg.id for msg in chunk_to_summarize])
# .delete()
# )()
await delete_messages(Message.objects.filter(session=chat_session, user=user, id__in=[msg.id for msg in chunk_to_summarize]))
log.info(f"Deleted {len(chunk_to_summarize)} messages, replacing with summary.")
# 🔹 Store new summary message (ensuring session=user consistency)
await sync_to_async(Message.objects.create)(
user=user,
session=chat_session,
custom_author="SUM",
text=summary_text,
ts=last_ts, # Preserve timestamp
)
# 🔹 Update ChatSession summary with latest merged summary
# chat_session.summary = summary_text
# await sync_to_async(chat_session.save)()
async def summarize_conversation(
chat_session: ChatSession,
messages: list[Message],
ai_obj,
is_summary=False,
):
"""
Summarizes all stored messages into a single summary.
- If `is_summary=True`, treats input as previous summaries and merges them while keeping detail.
- If `is_summary=False`, summarizes raw chat messages concisely.
"""
log.info(f"Summarizing messages for session {chat_session.id}")
# Convert messages to structured text format
message_texts = messages_to_string(messages)
#log.info(f"Raw messages to summarize:\n{message_texts}")
# Select appropriate summarization instruction
instruction = (
"Merge and refine these past summaries, keeping critical details and structure intact."
if is_summary
else "Summarize this conversation concisely, maintaining important details and tone."
)
summary_prompt = [
{"role": "system", "content": instruction},
{"role": "user", "content": f"Conversation:\n{message_texts}\n\nProvide a clear and structured summary:"},
]
# Generate AI-based summary
summary_text = await ai.run_prompt(summary_prompt, ai_obj)
#log.info(f"Generated Summary: {summary_text}")
return f"Summary: {summary_text}"